- High Energy Physics Z. Que, H. Fan, M. Loo, M. Blott, M. Pierini, A.D. Tapper and W. Luk, LL-GNN: Low Latency Graph Neural Networks on FPGAs for Particle Detectors, arXiv preprint arXiv:2209.14065, 2022. F. Wojcicki, Z. Que, A.D. Tapper and W. Luk, Accelerating Transformer Neural Networks on FPGAs for High Energy Physics Experiments, International Conference on Field Programmable Technology (FPT), 2022. Z. Que, M. Loo, H. Fan, M. Pierini, A. Tapper and W. Luk, Optimizing Graph Neural Networks for Jet Tagging in Particle Physics on FPGAs, International Conference on Field-Programmable Logic and Applications (FPL), 2022. Z. Que, M. Loo and W. Luk, Reconfigurable Acceleration of Graph Neural Networks for Jet Identification in Particle Physics, IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2022. Z. Que, E. Wang, U. Marikar, E.A. Moreno, J. Ngadiuba, H. Javed, B. Borzyszkowski, T. Aarrestad, V. Loncar, S. Summers, M. Pierini, P.Y.K. Cheung and W. Luk, Accelerating Recurrent Neural Networks for Gravitational Wave Experiments, IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), 2021.