
OPTIMIZING COARSE-GRAINED UNITS IN FLOATING POINT HYBRID FPGA

Chi Wai Yu 1, Alastair M. Smith2, Wayne Luk1, Philip H.W. Leong3, Steven J.E. Wilton2

1Dept of Computing 2Dept of Electrical 3Dept of Computer
Imperial College London and Computer Engineering Science and Engineering

London England University of British Columbia Chinese University of Hong Kong
{cyu,wl}@doc.ic.ac.uk Vancouver, B.C., Canada Hong Kong

{alastair, stevew}@ece.ubc.ca phwl@cse.cuhk.edu.hk

Abstract
This paper introduces a novel methodology to optimize

coarse-grained floating point units (FPUs) in a hybrid
FPGA. We employ common subgraph extraction to deter-
mine the number of floating point adders/subtracters (FAs),
multipliers (FMs) and wordblocks (WBs) in the FPUs. We
first study the area, speed and utilization trade-off of the se-
lected FPU subgraphs in a set of floating point benchmark
circuits. We then explore the impact of density and flexi-
bility of FPUs on the system in terms of area, speed and
routing resources. We derive an optimized coarse-grained
FPU by considering both architectural and system level is-
sues. The results show that: (1) embedding more types of
coarse-grained FPU in the system causes at most 21.3% in-
crease in delay, (2) the area of the system can be reduced by
27.4% by embedding high density subgraphs, (3) the high
density subgraphs requires 14.8% fewer routing resources.

1. Introduction
In modern Field Programmable Gate Arrays (FPGAs),

coarse-grained elements such as processors, memories and
DSPs are embedded into the fine-grained programmable
fabric. These functional elements provide significant im-
provements in speed, logic density and power consumption
for word-level computations. A hybrid FPGA consists of
a combination of coarse-grained and fine-grained reconfig-
urable elements. It provides a high-throughput and cost-
effective platform for designers to develop applications.

Coarse-grained units are more efficient than fine-grained
programmable logic for implementing specific word-level
operations. However they are less flexible, and only benefit
applications that can make use of them. Given this lim-
itation, optimization of coarse-grained elements becomes
a critical issue. Modern commercial FPGAs consist of
commonly used coarse-grained elements such as DSPs and
memories. The computational speed of domain-specific ap-
plications can be further increased by additional embedded
elements. For example, an application which demands high

performance floating point computation can achieve better
speed and density by incorporating embedded floating point
units (FPUs) [1].

Floating point adders/subtracters (FAs) and floating
point multipliers (FMs) contain several basic functional ele-
ments such as barrel shifters, adders and multipliers. Word-
blocks (WBs) are used for the bitwise operation of the float-
ing point number such as comparison, shifting, latch and
logical operation. Constructing hard circuit WBs, FAs and
FMs, which are composed of basic functional elements,
results in a more compact block with higher speed, but
less flexibility. Optimizing these hard circuits is essential.
Grouping together optimized WBs, FAs and FMs to be a
floating point unit (FPU) can further improve the speed and
area, since the interconnects between them use bus based
connection [1].

This paper assesses the impact of FPUs on hybrid FP-
GAs in terms of area, speed, routing resources and flexi-
bility. The number and connection of WBs, FAs and FMs
are determined by considering common subcircuits in a se-
lected set of floating point benchmark circuits. The com-
mon subgraph extraction technique [2] has been employed
to find out the fixed point arithmetic units which are com-
mon in a set of benchmark circuits. We adapt this method
to study the combination of wordblocks, floating point ad-
dition and multiplication.

Specifically, this paper offers:
• a novel methodology to optimize the floating point hy-

brid FPGA by considering both internal architecture of
FPUs and system level performance according to the
mixture of FPUs.

• a study of internal architecture of FPUs. Common
arithmetic subcircuits for floating point benchmark cir-
cuits are examined, and use these subcircuits to form a
hardcore FPU,

• a quantitative system level analysis of speed, area and
routing resource trade-off of common FP hardcores.
By considering the speed, the area and the routing re-

978-1-4244-2796-3/08/$25.00 © 2008 IEEE FPT 200857

Authorized licensed use limited to: Imperial College London. Downloaded on May 1, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

source of a hybrid FPGA with selection of different
hardcores, optimized designs can be obtained.

This paper is organized as follows. Section 2 describes
related work. Section 3 illustrates the types of FPUs and the
assumptions of the coarse-grained circuits. Section 4 then
presents the empirical methodology used to extract common
subcircuits and the evaluation schemes. Section 5 presents
our results and analysis, and Section 6 summarizes our con-
clusions.

2. Background
In the past decade, there has been much research on opti-

mizing conventional island-style fine-grained FPGAs. The
fine-grained elements consist of one or more k-input lookup
tables (k-LUTs) and fast local interconnects. The studies in-
clude different aspects of segmented routing architectures
for interconnect between fine-grained resources [3], and
the effect of LUT and cluster size of the fine-grained ele-
ments [4]. The goal of these studies is to create a fast and
area-efficient general purpose FPGA architecture.

Today, adding coarse-grained blocks within fine-grained
fabric to improve area and speed is a common technique,
since coarse-grained blocks implement specific functions
more efficiently than fine-grained fabric. Examples in-
clude embedded arithmetic multipliers and processors [5,6].
However, this hybrid FPGA architecture is on average ap-
proximately 20 times larger and 4 times slower than when
implemented as ASIC [7]. In order to reduce this gap,
considerable research has been focused on the architecture
of hybrid FPGA. Jamieson and Rose [8] propose shadow
clustering to minimize the overall area penalty by sharing
local routing resources of fine-grained elements with em-
bedded blocks. Also a coarse-grained architecture with bus-
based interconnect has been shown to reduce area for data-
path circuits [9].

Our previous work [2] detects common subcircuits that
occur frequently in a variety of benchmark circuits. This is
known as common subgraph extraction. Fused-arithmetic
units generated by these common subcircuits get up to 3.3
times in speed and 19.7 times in area for average improve-
ment of particular silicon cores. This paper employs this
technique to determine floating point common subgraphs
similar to the fixed point approach. Instead of the improve-
ment of particular cores, we focus on the system level trade-
off in hybrid FPGAs.

Coarse-grained logic can be tailored for a certain
domain-specific applications to achieve greater area and de-
lay reduction. An example is an application which requires
a significant amount of floating point computation. Im-
plementing floating point operations in fine-grained FPGA
technology consumes a large amount of logic and routing
resources. Therefore, a number of recent approaches to op-
timize floating point operations in FPGA have been pro-

posed. Pipeline stages of floating point arithmetic in cus-
tom computing machine have been optimized within exist-
ing fine-grained resources [10]. However, the density and
speed are still worse than that implemented in ASIC.

In [1], a novel domain-specific hybrid FPGA architecture
which embedded FPUs within fine-grained fabric has been
presented; this architecture has advantage of 18 times area
reduction when compared to a purely fine-grained architec-
ture for floating point applications. In [11], the best inter-
facing between FPUs and fine-grained elements has been
determined. However, these studies only accounted for the
particular FPU architecture, they do not evaluate the combi-
nation of WBs, FAs and FMs according to different applica-
tions. This paper examines this relationship and investigates
the effect of FPUs on a selected set of applications by using
common subgraph extraction and the hybrid FPGA explo-
ration tool called VPH [12].

3. Approach
This section describes the architecture of the resources

used in this work. First, we present the architecture of a
hybrid FPGA and its fine-grained elements. Then we de-
scribe the different potential coarse-grained FPUs and the
assumption of their configuration.

3.1. Hybrid FPGA and Fine-grained As-
sumption

A Hybrid FPGA consists of both coarse-grained and
fine-grained components, which are connected by routing
tracks. Our fine-grained fabric consists of a grid of identical
configurable logic blocks (CLBs). Each CLB contains k-
LUTs, flip flops (FFs), support for fast carry chains, internal
multiplexers and XOR gates. The coarse-grained embed-
ded blocks (EBs), such as embedded memories and multi-
pliers, are surrounded by CLBs as shown in Figure 1. As an
area model, we use the Virtex II CLB with area 10,912µm2

and feature size 0.15µm for our fine-grained fabric. The
FPGA is island-style, with horizontal and vertical channels
connecting the CLBs [3]. The channel contains W parallel
routing tracks of length 1 and is connected to neighbouring
CLBs using a connection block.

3.2. Coarse-grained Block Assumption

Single precision FP adders/subtracters (FAs) and FP
multipliers (FMs), with normalization are generated using
standard cell library design flow. They are synthesized by
Synopsys Design Complier with a 130nm process. A word-
block (WB) is a LUT and flip flop based unit. It carries out
bitwise shifting, comparison, latch and logical operations
such as and, or and xor.

In our previous work [1], WBs, FAs and FMs are con-
nected by bus based wires to construct a more compact

58

Authorized licensed use limited to: Imperial College London. Downloaded on May 1, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

�����
� �

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

����������

� �

���������� �����

�������������������� �����

� �

� �

����������

����������

Figure 1. Hybrid FPGA: Embedded blocks
(EBs) are surrounded by grid based CLBs

(a) FPU1

Connecting WBs, FAs and FMs
into coarse- grained FPU

(b) FPU2

+-
WB �

�	

*
*

*
*

*+ + **
+*

*

+

+

WB
+

� �
� � �
�

>>
==?

WB consists of LUT,
shifter, comparator

and flip flop
LUT

Figure 2. Connecting WBs, FAs and FMs into
different coarse-grained FPUs

coarse-grained FPU. This local bus based connection can
save a large amount of the routing resources in an FPGA.
Figure 2 shows an example of this arrangement.

3.3. Interface of Coarse-grained Blocks in
Hybrid FPGA

The coarse-grained blocks are able to connect to fine-
grained resources in various ways. Our previous work [11]
shows that the best interface between coarse-grained and
fined-grained elements in a hybrid FPGA for floating-point
applications are: (1) FPUs are square, (2) FPUs should be
positioned tightly near the centre of the FPGA, (3) the FPU
pins should be arranged on four sides of the FPU. The inter-
face between coarse-grained blocks and fine-grained blocks
in this paper is assumed to follow the above configuration.

3.4. Optimization Parameters

In this paper, we optimize the internal connection struc-
ture and the number of the WBs, FAs and FMs. If more
WBs, FAs and FMs are inside an FPU (Figure 2 (b)), greater
area and speed improvement can be achieved, but the whole
FPU is wasted if not used. In Figure 2 (a), FPU1 with fewer
WBs, FAs and FMs would waste less resources if not used,
but we need a large amount of fine-grained elements to sup-
port WBs, FAs or FMs. Therefore, choosing a suitable num-

ber of WBs, FAs and FMs is important. We consider the
FPU in the following parameters:

1. Internal optimization of FPU:
The WBs, FAs and FMs in FPUs can be connected in

different orders as shown in Figure 2 . We consider the per-
formance of individual FPUs by connecting such elements
using commonly found connection patterns.

2. System level optimization:
Based on the different FPU architectures from common

subgraphs, we optimize the performance of the hybrid FP-
GAs by selecting the FPUs in the following ways:
• Density of FPU. The FPU consists of more computa-

tion elements achieves greater reduction since all ele-
ments can be closely packed. However, this may re-
quire more routing resources for the connection be-
tween the coarse-grained block and fine-grained block.
And also the flexibility decreases, since it is difficult to
reuse in another application.

• Flexibility of FPU. FPUs are wasted when not used.
The FPUs can be reused across different applications.
Therefore, embedding high flexibility can reduce the
area waste for unused FPUs.

4. Methodology
We employ an empirical methodology to examine the

speed and area of different coarse-grained FPUs. This sec-
tion describes a common subgraph extraction methodology
for floating point applications, and the tools, benchmarks
and models that are used.

4.1. Floating Point Benchmark Circuits

To explore the design of a hybrid FPGA based on com-
mon subgraph extraction and synthesis, a set of floating
point designs are used as benchmark circuits. They are:
(1) dscg, a datapath of digital sine-cosine generator, (2)
b f ly, the basic computation of Fast Fourier Transform: z =

y+x∗w where inputs and output are complex numbers, (3)
f ir4, a 4-tap finite impulse response filter, (4) ode, a circuit
to solve ordinary differential equations, (5) mm3, a 3x3 ma-
trix multiplier. (6) bgm, a circuit to compute Monte Carlo
simulations of interest rate model derivatives, (7) syn2, a
circuit contains 5 FAs and 4 FMs, (8) syn7 a circuit contains
25 FAs and 25 FMs. syn2 and syn7 are two synthetic bench-
mark circuits generated by a synthetic benchmark circuit
generator, based on [13]. These 8 single precision floating
point benchmark circuits are not efficiently implemented in
fine-grained FPGAs, since the floating point computation
requires a great deal of of fine-grained resources. The use
of fine-grained CLB resources to implement these applica-
tions is summarised in Table 4.1. The tool VPH is used to
do clustering, placement and routing of the circuits.

59

Authorized licensed use limited to: Imperial College London. Downloaded on May 1, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

Table 1. The delay and the number of CLB
used in each benchmark circuit

Circuits Area (in CLB) Delay (ns)
dscg 4,759 15.54
bfly 4,984 16.3
fir4 4,551 13.9
ode 4,100 10.68

mm3 3,328 14.54
bgm 16,300 21.29
syn2 5,555 12.81
syn7 30,245 30.4

4.2. Tool Flow

We adopt common subgraph extraction to detect
the most frequently used arithmetic units in float-
ing point benchmark circuits, such as floating point
adders/subtracters, multipliers and registers. Then we syn-
thesize different combinations of these units into coarse-
grained blocks, which are embedded in a hybrid FPGA. Af-
ter that, the benchmark circuits with these coarse-grained
embedded blocks (EBs) are evaluated by the VPH evalua-
tion tool for area and timing analysis.

Common Subgraph Extraction
Floating point applications have common characteristics

for floating point computations. A common subgraph in
these applications represents functionality shared across the
benchmark circuits. The subgraph can potentially be im-
plemented as a hard EB to speed up the computation. Ef-
ficiency can usually be improved by combining similar FP
operations into the same core, by common subgraph extrac-
tion [2]. We enhance this method for floating point applica-
tion which supports FA, FM and WB extraction.

Figure 3 is an example of a common subgraph of two
circuits. Figure 3(a) and (b) are part of dscg and bfly re-
spectively. The common floating point operations can be
extracted as a single unit as shown in Figure 3(c).

In the tool flow of common subgraph extraction as shown
in Figure 4, floating point benchmark circuits are written
in Verilog. Icarus Verilog [14] and ODIN [15] are used to
parse and flatten the Verilog benchmark circuits. The flat-
tened netlist is then fed into the program Maximum Com-
mon Subgraph (MCS) generation stage to extract the com-
mon subgraphs in these benchmark circuits.

The common subgraphs cover FP operations such as the
example shown in Figure 3(c). With the connection in-
formation of WBs, FAs and FMs, we describe the coarse-
grained FPU of common subcircuit in another Verilog file.
The FPU, which consists of complex FA and FM circuits,
is then synthesized by Synopsys Design Complier with
130nm process. We obtain the area and delay of the this
FPU and use this information to evaluate the FPGA by
VPH.

(c) common subgraph
of dscg and bfly

(a) part of dscg

(b) part of bfly

* WB �
��

*
+*

*
-

+ *
*

+
FF

+-

Figure 3. Common subgraph extraction for
WB, FA and FM in FP applications

����� ���������
� �"! ! ���#���$! % �&!

' % ! (
) *���� +��&, -/.0) 1

2��
3����"*$($4#��� 56�
7 89% :�(; �$<"��
80.9=�>

2� �"! ! ���#���$! % �6!
� ?��A@#B0C

@#B9C
7 D�E"! � �F*&!�@/�"E�% 4�+$4

B0?A4;4/?��
CG+$H":�� �AIA(���>

CKJA�&! ("�F�$% �/*&?A4;4#?��
�$+$H$*F% � *$+F% !

7ACKJA�"?AI"�&J"�;.L�F�F% :��
B9?�4;IA % ��� >

MG��� % ?$:
�F�F��*F� % H"�F�N! (��
*"?A4#4#?��
�A+H*$% � *"+A% !

��� �A�;���"�/! % 4;% ��:
���"�� J"�F% �#� �F�$+F !

Figure 4. Common subgraph extraction de-
sign flow

VPH: Versatile Place and Route for Hybrid FPGA
After we have determined the FP coarse-grained blocks

by common subgraph extraction, such blocks are inter-
faced to the fine-grained FPGA. We use the evaluation tool
VPH [12] to explore this novel hybrid FPGA architecture.
VPH is a modified version of the VPR tool, with support
for embedded blocks (EBs), memories, multipliers, carry
chains and user constraints. In the VPH design flow in
Figure 5, benchmark circuits described in a hardware de-
scription language (HDL) are synthesized to a mapped li-
brary netlist in VHDL format using Synplicity’s Synplify
Premier. Various units such as LUTs and registers are in-
cluded in the library netlist. VPHpack packs and clusters
these simple units into fine-grained elements called config-
urable logic blocks (CLBs). Area, timing and position of the
EBs are specified in a user constraint file. The architecture
file contains the information of the architectural parameters
of the fine-grained elements, such as delay of LUT and reg-
ister. The VPH tool performs placement, routing and timing
analysis using the packed benchmark netlists, constraint file
and architecture file. The tool finally estimates the area and
delay for each benchmark circuit.

5. Results
In this section, the internal and system level optimization

of coarse-grained floating point units are studied. The com-

60

Authorized licensed use limited to: Imperial College London. Downloaded on May 1, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

O9P Q&R$S T UFQ�T V"P UNW S X UOGP U$YFZ6T S [\S]�^\YF]�_
`�a�b S T S a]NQ a] b T P Y$S]6T a WQ a [\[a] b V"c�^AP Y ` Rd�e b

f�g]6T R&U b S bh f�g] ` X S W gi�P UF[/S UFPFjFk l�m

nAioe�UF]"Q�R"[NY$P p b
q S T R\Q a [/[a]

b V"c�^AP Y ` RNQ�S P Q&V$S T bY b dKe bh rsS ^FR\X U"t�UFX6rsuGv&m

i�X Y"Q6U/Y$]�_
P a V&T U;P U b V"X TY$]&_\T S [\S]�^
YF]�Y$X g b S b P U b V"X T

wNY `$` U$_X S c$P Y$P g]&U"T X S b T

xsiKr ` Y$Q&p

xsi�ry]�U�T X S b T
i�X Y"Q6U/Y$]�_
z a V6T Uh xGi�rKm

Figure 5. Design flow for common subgraph
EBs using VPH

mon subgraphs of the floating point benchmark circuits are
examined to optimize the architecture of the FPU. After that
we explore the area and delay impact of making the com-
mon subgraphs coarse-grained units in the hybrid FPGA.
The default architecture parameters of the experiments con-
ducted are: (1) CLB with 2x 4-LUTs, (2) the channel width
is 50 to facilitate routing.

5.1. Internal Optimization of FPU

We determine the common subgraphs of floating point
arithmetic in the benchmark circuits. The hard FPU has
specific ordering of WBs, FAs and FMs such that it can be
reused by different benchmark circuits. The common sub-
graphs are shown in Table 5.1, which are found by common
subgraph extraction described in Section 4. The hard FPU
is obtained by 130nm process, however the CLB feature
size modelled in VPH is 150nm. Therefore, the normal-
ized area (Area/Feature size squared) is used to obtain the
equivalent area in terms of CLBs. The performance of the
various common subcircuits is examined.

Table 5.1 shows the occurrence in benchmarks, normal-
ized area, delay, number of input/output and latency of each
common subgraph found. It is obvious that more FAs and
FMs embedded in an FPU can achieve higher area reduc-
tion since all the elements are compacted into a single unit.
The average area of the FPUs is 9.4% less than that without
clustering of WBs, FAs and FMs. But the delay after group-
ing is 14.9% more than pure FAs and FMs. The difference
in the delay is because the timing report of single FA or FM
does not account for the output to input delay when con-
necting them together. Therefore we should investigate the
performance of the system rather than the single unit.

5.2. System Level Optimization

After we determine the common subcircuits, we evaluate
the impact of these subcircuits to the systems. Based on the

optimization parameter in Section 3.4. The delay, area and
routing resources of purely FA/FM system, and mixture of
subcircuits are examined. In the purely FA/FM system, 25
x FA and 25 x FM are used in the hybrid FPGA.

Density of FPU
We select a set of common subcircuits with more FAs,

FMs and WBs. For example, Graph 41 has 11 nodes that
are a combination of FAs and FMs, contains most compu-
tation elements among subgraphs in Table 5.1. Since the
density and area reduction of this individual subcircuit is
greatest compared to separate FA, FM and WB, this set of
subcircuits can be the best choice to reduce the area of the
hybrid FPGA. The selection scheme is:

1. Selecting the common subcircuit with highest number
of FAs, FMs and WBs,

2. Removing the FAs, FMs and WBs in the selected com-
mon subcircuits from the benchmark circuits,

3. Selecting the next most common subcircuit in the re-
maining subgraphs with highest number of computa-
tion units,

4. Repeating 2-3 until all subgraphs have been visited.

We choose 7 types of FPUs: Graph 41, Graph 20,
Graph 37, Graph 12, Graph 26, FM and FA as subcircuits
to embed in the hybrid FPGA (FPGA 41 20 37 12 26).

Flexibility of FPU
If we can reuse all the subcircuits for all applications,

the area of the hybrid FPGA may be reduced. We select
a set of subcircuits which have highest occurrence rate in
the benchmark circuits from Table 5.1, and based on the
following rules:

1. Selecting the common subcircuit which represents the
highest number of computation elements in all bench-
mark circuits,

2. Removing the FAs, FMs and WBs in the selected com-
mon subcircuits from the benchmark circuits,

3. Selecting the next most common subcircuit in the re-
maining subgraphs which represents the highest num-
ber of computation elements in all benchmark circuits,

4. Repeating 2-3 until all subgraphs have been visited.

We finally choose 5 type of FPUs: Graph 12, Graph
15, Graph 26, FM and FA to embed in the hybrid FPGA
(FPGA 12 15 26).

Discussion
From the three hybrid FPGAs we selected : (a) Purely

FA/FM FPGA, (b) FPGA 12 15 26 and
(c) FPGA 41 20 37 12 26, we examine the area, delay and
routing resources impact to the applications. The utiliza-
tion rate of the subcircuits in each hybrid FPGA for bench-
mark circuits is shown Table 5.2. An obvious result is that,

61

Authorized licensed use limited to: Imperial College London. Downloaded on May 1, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

Table 2. The common subgraph structure occurred in benchmark circuits

no. Subcircuits no. Subcircuits no. Subcircuits no. Subcircuits no. Subcircuits

1 2 3 4 5

6 7 8 9 10

11

*
+-

WB
x6

{|}

* 12
+-

WB
x6

~��

* 13

*
+

WB
x6

���

*+- 14
+

WB
x6

���

+

*

15
* +-WB

x6
���

16
+

WB
x6

���

*+- 17

*
+

WB
x6

���

+* 18
+

WB
x6

���

+* 19
+

WB
x6

���

+ 20

*
+

WB
x6

���

+
*
*

21 22 23 24 25

26 27 28

29 30 31

32 33 34

������

35 36

������

������
37

+
WB
x6 �

 ¡

+*
*

38
¢£¤¢£¤

39

40 41

embedding FPUs can achieve at least 31.5 times area and
2.9 times delay reduction compared to purely fine-grained
FPGA (Table 4.1).
Result 1, area impact: Figure 6 shows the number
of CLBs used in each application with different types of
graphs. FPGA 12 15 26 reduces area by 18.8% and
FPGA 41 20 37 12 26 reduces area by 27.4% when com-
pared to purely FA/FM hybrid FPGA’s area in average. The
purely FA/FM system does not have wordblocks and as such
it requires a lot of fine-grained CLBs as registers and logi-
cal operators. FPGA 41 20 37 12 26 embeds high density
subcircuits, which are not flexible to the benchmarks, some
of the FPUs are thus wasted, as they are not used. However,
the individual subcircuits obtain highest area reduction to
overcome the waste of area when not used. Therefore, it is
the best to reduce area in hybrid FPGA.
Result 2, delay impact: Figure 7 shows purely
FA/FM hybrid FPGA achieves highest speed. The delay
of purely FA/FM FPGA is 16.7% and 21.3% less than
FPGA 12 15 26 and FPGA 41 20 37 12 26 respectively.
We discover that embedding more coarse-grained FPUs
types causes a decrease in speed. The critical path is dom-
inated by the connection between two FPUs. This path
can only be optimized by moving the FPUs close together.

Since the various FPUs have different architectures, they
cannot be swapped to get better placement. For exam-
ple, we cannot swap Graph 41 and Graph 20, but two
Graph 12 can be swapped. The purely FA/FM system
has least types of subcircuits. Therefore, due to the place-
ment constraints of the different FPUs type, FPUs in a
purely FA/FM system have more freedom to move around
to achieve higher speed.

Result 3, routing resource impact: On average, the
channel width of FPGA 41 20 37 12 26 is 14.8% less than
the purely FA/FM FPGA and 9% less than FPGA 12 15 26
as shown in Figure 8. The FPUs in FPGA 41 20 37 12 26
are most compact, most of the connection is in the FPUs,
therefore it must use less routing resources for connection.

From the above result, different mixtures of coarse-
grained subcircuits can achieve different aspects of opti-
mization in hybrid FPGAs. As a result, we could use a
suitable set of subcircuits to obtain a particular optimiza-
tion goal.

6. Conclusion
This paper illustrates the adoption of common subgraph

extraction to determine optimized floating point coarse-
grained blocks in hybrid FPGAs. Floating point circuits

62

Authorized licensed use limited to: Imperial College London. Downloaded on May 1, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

Table 3. Statistic of subgraphs. The feature size (L) of the coarse-grained units is 0.13µm. Virtex II
CLB: area is 10,912µm2, feature size is 0.15µm, normalized area is 485,013

Graph Occurrence in benchmarks area(A) Normalized Area in delay no. no. latency
no. dscg bfly fir4 ode mm3 bgm syn2 syn7 (µm2) area(A/L2) CLB (ns) input output (cycles)

WB No separate WB embedded 22,009 1,302,307 3 0.59 104 38 1
FA 4 4 3 3 2 9 5 25 59,151 3,500,059 7 2.77 67 39 6
FM 4 4 4 2 3 11 4 25 114,696 6,786,745 14 3.18 67 39 6

1 0 2 1 0 1 2 0 4 263,520 15,592,899 32 3.17 133 53 12
2 0 0 0 1 0 0 0 8 184,811 10,935,562 23 3.41 133 53 18
3 0 0 0 0 0 0 1 3 163,017 9,645,976 20 3.33 133 53 12
4 0 0 0 0 0 0 1 4 419,114 24,799,645 51 3.69 199 67 18
5 0 0 1 0 0 2 0 2 415,381 24,578,757 51 3.99 199 67 18
6 0 0 0 0 0 0 1 7 282,878 16,146,627 33 3.52 133 53 18
7 0 2 1 0 1 2 0 8 207,722 12,291,242 25 3.27 133 53 18
8 0 0 0 0 0 1 1 8 211,799 12,532,485 26 3.31 133 53 18
9 0 0 0 0 0 4 0 7 259,231 15,339,112 32 3.38 133 53 18

10 0 0 0 0 0 3 0 5 309,120 18,291,124 38 3.51 166 60 24
11 2 2 1 0 1 2 0 4 413,951 24,494,142 51 4.06 160 84 18
12 2 2 3 1 1 7 0 16 309,754 18,328,639 38 3.66 127 77 18
13 2 0 0 0 0 1 0 4 470,076 27,815,147 57 4.95 193 91 18
14 0 0 1 0 1 2 0 6 368,998 21,834,201 45 4.06 160 84 18
15 2 2 3 1 2 9 0 16 314,496 18,609,230 38 3.53 127 77 18
16 2 0 0 1 0 3 0 8 366,819 21,705,266 45 5.82 160 84 18
17 0 0 1 0 1 2 0 5 450,525 26,658,284 55 3.54 193 91 18
18 0 1 1 0 1 2 0 8 366,819 21,705,266 45 3.95 160 84 18
19 0 1 1 0 1 2 1 8 271,785 16,081,952 33 3.71 127 77 12
20 0 0 1 0 1 2 0 2 543,269 32,146,094 66 3.54 226 98 18
21 0 2 1 0 1 2 0 2 309,120 18,291,124 38 3.34 166 60 18
22 0 0 1 0 0 2 0 5 309,120 18,291,124 38 3.34 166 60 18
23 0 0 0 0 0 1 0 5 268,377 15,880,295 33 4.54 166 60 18
24 0 0 0 0 0 0 1 5 268,377 15,880,295 33 3.54 166 60 18
25 0 0 0 0 0 0 1 6 309,120 18,291,124 38 3.51 166 60 18
26 2 0 0 1 0 5 1 15 166,254 9,837,514 20 3.39 100 46 12
27 0 0 0 0 0 1 0 1 567,414 33,574,792 69 3.55 298 88 48
28 0 0 0 0 0 1 0 3 417,493 24,703,727 51 3.76 232 74 36
29 0 2 1 0 1 2 1 8 106,534 6,303,786 13 3.44 100 46 12
30 0 0 0 0 0 1 0 4 352,290 20,845,562 43 3.83 199 67 30
31 0 0 0 0 0 1 0 4 415,381 24,578,757 51 3.98 199 67 30
32 0 0 0 0 0 0 1 2 460,638 27,256,686 56 3.87 232 74 18
33 0 0 0 0 0 1 0 1 639,636 37,848,284 78 4.68 298 88 30
34 0 0 0 1 0 0 0 4 311,337 18,422,307 38 3.89 232 60 18
35 0 0 0 0 0 0 1 3 364,272 21,554,556 44 4.54 199 67 18
36 0 0 0 1 0 0 1 8 268,323 15,877,100 33 3.40 265 53 12
37 0 1 1 0 1 2 0 2 463,914 27,450,532 57 3.74 193 91 18
38 2 0 0 1 0 3 0 8 210,981 12,484,082 26 4.02 199 53 18
39 0 0 0 0 0 1 0 2 463,216 27,409,230 57 3.75 232 74 36
40 0 0 1 0 0 0 0 2 550,086 32,549,467 67 4.49 265 81 24
41 0 0 0 0 0 1 0 1 794,002 46,982,366 97 3.68 397 109 54

Table 4. The utilization rate of subcircuits in the three hybrid FPGAs
Hybrid FPGA 1. Purely FA/FM FPGA 2. FPGA 12 15 26 3. FPGA 41 20 37 12 26

Graph no. FA FM 12 15 26 FA FM 41 20 37 12 26 FA FM
No. of subcircuits in FPGA 25 25 16 2 2 7 7 1 1 2 8 3 4 5

Benchmark Utilization rate (%)
dscg 16 16 12.5 0 0 28.57 28.57 0 0 0 25 0 50 40
bfly 16 16 12.5 0 0 28.57 28.57 0 0 50 12.5 0 0 40
fir4 12 16 18.75 0 0 0 14.29 0 100 0 12.5 0 0 0
ode 12 8 6.25 0 0 28.57 14.29 0 0 0 12.5 0 50 20

mm3 8 12 6.25 50 0 0 14.29 0 100 0 0 0 0 0
bgm 36 44 43.75 100 0 0 28.57 100 100 0 12.5 0 0 40
syn2 20 16 0 0 50 57.14 42.86 0 0 0 0 33.33 100 60
syn7 100 100 100 0 100 100 100 100 0 100 100 100 100 100

63

Authorized licensed use limited to: Imperial College London. Downloaded on May 1, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

Area vs Type of graph

0

500

1000

1500

2000

2500

3000

dscg bfly fir ode mm3 bgm syn2 syn7
Benchmarks

No
. o

f C
LB

s

Purely FA/ FM FPGA_12_15_26 FPGA 41_20_37_12_26

Figure 6. The number of CLBs used by differ-
ent type of embedded FPUs

Delay vs Type of graph

0

1

2

3

4

5

6

dscg bfly fir ode mm3 bgm syn2 syn7

Benchmarks

De
la

y
(n

s)

Purely FA/ FM FPGA_12_15_26 FPGA 41_20_37_12_26

Figure 7. The delay of benchmark circuits by
using different type of FPUs

are often not efficiently implemented in fine-grained FPGA
technology. This paper has shown the impact of embed-
ding different and multiple types of coarse-grained blocks
on a floating point hybrid FPGA. We have found that,
(1) the speed of the system is the highest with FAs and FMs
only implementation, (2) higher density subgraphs produce
greater reduction on the area of the system, and (3) they
require less routing resources. We can optimize specific pa-
rameters such as area, delay and routing resources for the
hybrid FPGA based on the above results. Current and fu-
ture work includes generalising our model to support mul-
tiple types of embedded blocks for different application do-
mains, and develop algorithm to map the subcircuits into
different benchmark circuits.
Acknowledgement. The support of UK Engineering and
Physical Sciences Research Council (EP/C549481/1,
EP/D060567/1 and EP/D062322/1) and Canadian Com-
monwealth Postdoctoral Fellowship scheme (Canadian Bu-
reau for International Education/CBIE) is gratefully ac-
knowledged.

References
[1] C. H. Ho, C. W. Yu, P. H. W. Leong, W. Luk and

S.J.E. Wilton, “Domain-Specific Hybrid FPGA: Architec-

Channel width vs Type of graph

0
5

10
15
20
25
30
35
40

dscg bfly fir ode mm3 bgm syn2 syn7
Benchmarks

Ch
an

ne
l W

id
th

 W

Purely FA/ FM FPGA_12_15_26 FPGA 41_20_37_12_26

Figure 8. The routing resources of bench-
mark circuits by using different type of FPUs

ture and Floating Point Applications,” in Proc. FPL, 2007,
pp. 196 – 201.

[2] Alastair M. Smith, George A. Constantinides and Peter Y.
K. Cheung, “Fused-Arithmetic Unit Generation for Recon-
figurable Devices using Common Subgraph Extraction,” in
Proc. ICFPT, 2007, pp. 105–112.

[3] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD
for Deep-Submicron FPGAs,” Kluwer Academic Publishers,
1999.

[4] E. Ahmed and J. Rose, “The Effect of LUT and Cluster Size
on Deep-Submicron FPGA Performance and Density,” IEEE
Trans. VLSI, vol. 12, no. 3, pp. 288–298, March 2004.

[5] Altera Corp., “Stratix III Device Handbook, Vol.1,” 2006.
[6] Xilinx Inc., “Virtex-5 Family Overview - LX, LXT, and SXT

Platforms,” 2007.
[7] I. Kuon and J. Rose, “Measuring the gap between FPGAs

and ASICs,” in IEEE Trans. CAD, vol. 26, no. 2, 2007, pp.
203–215.

[8] P. Jamieson and J. Rose, “Enhancing the Area-Efficiency of
FPGAs with Hard Circuits Using Shadow Clusters,” in Proc.
ICFPT, 2006, pp. 1–8.

[9] A. Ye, J. Rose, and D. Lewis, “Architecture of Datapath-
Oriented Coarse-Grain Logic and Routing for FPGAs,” in
Proceedings of the IEEE Custom Integrated Circuits Confer-
ence (CICC), 2003, pp. 61–64.

[10] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna, “Analysis of
High-performance Floating-point Arithmetic on FPGAs,” in
Proc. Parallel and Distributed Processing Symposium, 2004,
pp. 149–156.

[11] C. W. Yu, Julien Lamoureux, S. J. E. Wilton, P. H. W.
Leong,and Wayne Luk, “The Coarse-Grained/Fine-Grained
Logic Interface with Embedded Floating-Point Arithmetic
Units,” in Proc. SPL, 2008, pp. 63–68.

[12] C. W. Yu, “A Tool for Exploring Hybrid FPGAs,” in Proc.
FPL PhD forum, 2007, pp. 509 – 510.

[13] P. D. Kundarewich and J. Rose, “Synthetic circuit genera-
tion using clustering and iteration,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 23, no. 6, pp. 869–887, 2004.

[14] ICARUS, Verilog http://www.icarus.com/eda/verilog.
[15] P. Jamieson and J. Rose, “A verilog RTL synthesis tool for

heterogeneous FPGAs,” in Proc. FPL, 2005, pp. 305–310.

64

Authorized licensed use limited to: Imperial College London. Downloaded on May 1, 2009 at 07:28 from IEEE Xplore. Restrictions apply.

