

Chun Hok Ho¹, Chi Wai Yu¹, Philip Leong², Wayne Luk¹, Steve Wilton³

¹ Department of Computing, Imperial College London
 ² Department of Computer Science and Engineering, Chinese University of Hong Kong
 ³ Department of Electrical and Computer Engineering, University of British Columbia

28 August 2007

Overview

- 1. Motivation
- 2. Contributions
- 3. Hybrid FPGA: Architecture
- 4. Example: Floating-Point FPGA
- 5. Evaluation
- 6. Conclusion

1. Motivation

Heterogeneous blocks in existing FPGAs DSP blocks: DSP48 in Virtex-4 Memory blocks: M4K in Cyclone II Domain-specific heterogeneous blocks? Identify suitable blocks □ Architecture exploration □ Evaluate performance

2. Contributions

- Domain-specific hybrid FPGA architecture
 - Reconfigurable resources: multiple granularity
 - Customised for different applications
 - Modelling: without having to make a chip and write all the CAD tools
- Hybrid FPGA for Floating-Point Applications
 - Novel parameterised coarse-grained block for floating point
 - □ 6 Benchmarks: compare with Virtex-II device

3. Hybrid FPGA: architecture

Most digital circuits

- □ Datapath → regular, word-based logic

Hybrid FPGA

- Coarse-grained resources
 datapath
 - Customised coarse-grained block for domainspecific requirements
- □ Fine-grained resources → control logic
 - Use existing FPGA architecture
- Better match to computing applications, particularly in a given domain

arbitrary embedded blocks

Analysis

Modelling

- Synthesizable coarse-grained fabric model
- Use commercial FPGA place and route tool and virtual embedded blocks (VEBs)

Evaluation

P&R different benchmark circuits on hybrid FPGA, measure speed & area

Exploration

Measure performance of benchmarks over different architectures

Virtual Embedded Blocks

- Dummy blocks used to model coarse-grained block's area and delay
- Timing analyzer can be used to determine hybrid's performance (including fine-to-coarse routing and delays)

4. Floating point hybrid FPGA

Coarse-grained units

- Dominated by multiplication and addition
- IEEE double precision floating point
- 64-bit datapaths much more efficient (share routing and configuration, specialised logic)

Fine-grained units

- □ Implement control logic, state machine
- Xilinx Virtex II used

Coarse-grained fabric design

Coarse-grained block synthesized HDL to standard cells VEB to model coarse-grained block in Virtex II HDL allows parameterisation of architecture Number of embedded floating point operators, feedback registers, etc

D=9, M=4, R=3, F=3, 2 add, 2 mul: best density over benchmarks

5. Evaluation

- 6 benchmark circuits
 - DSP computation kernels: e.g. bfly
 - □ Linear algebra: e.g. matrix multiplication
 - Complete application: e.g. bgm
- Circuits: partitioned to control + datapath
 Control: vendor tools to fine-grained units
 Datapath: manually map to coarse-grained units
- Also directly synthesized to Xilinx Virtex II devices for comparison

Example floorplan (bgm)

Results

	Floating Point hybrid FPGA		XC2V3000-6			
	Area (slices)	Delay (ns)	Area (slices)	Delay (ns)	Area (times)	Delay (times)
bfly	565	9.02	13733	24.57	24.3	2.72
dscg	661	10.11	9614	22.78	14.5	2.25
fir4	371	9.06	11290	23.68	30.4	2.61
mm3	642	8.90	8889	23.4	13.8	2.63
ode	545	9.74	8238	21.93	15.1	2.25
bgm	1810	10.00	30207	24.34	16.7	2.43
				Geo	10 2	2 40
	Mean				10.3	2.40

Future work

- Explore different coarse-grained units for floating point
- Automated design tools
- Other domain-specific applications
 - □ Scientific computing, imaging, networking

6. Conclusion

Proposed domain-specific hybrid FPGAs □ Explore architectures using existing FPGA tools Allow customisation beyond conventional FPGAs Domain-specific floating point FPGA □ 18 times area reduction compared with □ 2.5 times speedup Virtex-II Hybrid FPGAs □ Fine-grained + synthesizable coarse-grained blocks □ Closer to the area and speed of ASICs □ Maintain a good degree of flexibility