Domain-Specific Hybrid FPGA: Architecture and Floating Point Applications

Chun Hok Ho1, Chi Wai Yu1, Philip Leong2, Wayne Luk1, Steve Wilton3

1 Department of Computing, Imperial College London
2 Department of Computer Science and Engineering, Chinese University of Hong Kong
3 Department of Electrical and Computer Engineering, University of British Columbia

28 August 2007
Overview

1. Motivation
2. Contributions
3. Hybrid FPGA: Architecture
4. Example: Floating-Point FPGA
5. Evaluation
6. Conclusion
1. Motivation

- Heterogeneous blocks in existing FPGAs
 - DSP blocks: DSP48 in Virtex-4
 - Memory blocks: M4K in Cyclone II
- Domain-specific heterogeneous blocks?
 - Identify suitable blocks
 - Architecture exploration
 - Evaluate performance
2. Contributions

- Domain-specific hybrid FPGA architecture
 - Reconfigurable resources: multiple granularity
 - Customised for different applications
 - Modelling: without having to make a chip and write all the CAD tools

- Hybrid FPGA for Floating-Point Applications
 - Novel parameterised coarse-grained block for floating point
 - 6 Benchmarks: compare with Virtex-II device
3. Hybrid FPGA: architecture

- Most digital circuits
 - Datapath ➔ regular, word-based logic
 - Control logic ➔ irregular, bit-based logic

- Hybrid FPGA
 - Coarse-grained resources ➔ datapath
 - Customised coarse-grained block for domain-specific requirements
 - Fine-grained resources ➔ control logic
 - Use existing FPGA architecture
 - Better match to computing applications, particularly in a given domain
Analysis

- Modelling
 - Synthesizable coarse-grained fabric model
 - Use commercial FPGA place and route tool and virtual embedded blocks (VEBs)

- Evaluation
 - P&R different benchmark circuits on hybrid FPGA, measure speed & area

- Exploration
 - Measure performance of benchmarks over different architectures
Virtual Embedded Blocks

• Dummy blocks used to model coarse-grained block’s area and delay

• Timing analyzer can be used to determine hybrid’s performance (including fine-to-coarse routing and delays)
4. Floating point hybrid FPGA

- Coarse-grained units
 - Dominated by multiplication and addition
 - IEEE double precision floating point
 - 64-bit datapaths much more efficient (share routing and configuration, specialised logic)

- Fine-grained units
 - Implement control logic, state machine
 - Xilinx Virtex II used
Coarse-grained fabric design

- Coarse-grained block synthesized
 - HDL to standard cells
 - VEB to model coarse-grained block in Virtex II
- HDL allows parameterisation of architecture
 - Number of embedded floating point operators, feedback registers, etc
Coarse-grained fabric

D=9, M=4, R=3, F=3, 2 add, 2 mul: best density over benchmarks
5. Evaluation

- 6 benchmark circuits
 - DSP computation kernels: e.g. bfly
 - Linear algebra: e.g. matrix multiplication
 - Complete application: e.g. bgm

- Circuits: partitioned to control + datapath
 - Control: vendor tools to fine-grained units
 - Datapath: manually map to coarse-grained units

- Also directly synthesized to Xilinx Virtex II devices for comparison
Example floorplan (bgm)
Results

<table>
<thead>
<tr>
<th></th>
<th>Floating Point hybrid FPGA</th>
<th>XC2V3000-6</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area (slices)</td>
<td>Delay (ns)</td>
<td>Area (slices)</td>
<td>Delay (ns)</td>
</tr>
<tr>
<td>bfly</td>
<td>565</td>
<td>9.02</td>
<td>13733</td>
<td>24.57</td>
</tr>
<tr>
<td>dscg</td>
<td>661</td>
<td>10.11</td>
<td>9614</td>
<td>22.78</td>
</tr>
<tr>
<td>fir4</td>
<td>371</td>
<td>9.06</td>
<td>11290</td>
<td>23.68</td>
</tr>
<tr>
<td>mm3</td>
<td>642</td>
<td>8.90</td>
<td>8889</td>
<td>23.4</td>
</tr>
<tr>
<td>ode</td>
<td>545</td>
<td>9.74</td>
<td>8238</td>
<td>21.93</td>
</tr>
<tr>
<td>bgm</td>
<td>1810</td>
<td>10.00</td>
<td>30207</td>
<td>24.34</td>
</tr>
</tbody>
</table>

Geo Mean

18.3 2.48
Future work

- Explore different coarse-grained units for floating point
- Automated design tools
- Other domain-specific applications
 - Scientific computing, imaging, networking
6. Conclusion

- Proposed domain-specific hybrid FPGAs
 - Explore architectures using existing FPGA tools
 - Allow customisation beyond conventional FPGAs
- Domain-specific floating point FPGA
 - 18 times area reduction
 - 2.5 times speedup
- Hybrid FPGAs
 - Fine-grained + synthesizable coarse-grained blocks
 - Closer to the area and speed of ASICs
 - Maintain a good degree of flexibility

\{ compared with Virtex-II \}