
GH09.B.1.portkey - Port Expander and
Keypad Controller
General Description

This benchmark is a general purpose input output (GPIO) port expander and keypad controller.
This is a slave device that communicates to a main controller via a serial peripheral interface
(SPI) bus. There are 16 GPIO pins that can either be programmed as inputs, outputs, or part of
a keypad controller that can be configured to a maximum of an 8x7 keypad matrix. Each GPIO
can be programmed to send a general interrupt signal to the master device via a common
interrupt output at which the device needs to be queried as to which GPIO caused the
interrupt.

Features

 SPI 4 pin bus to master

 16 programmable pins

 8x7 keypad controller

 Programmable interrupts when in GPIO mode

Block Diagram

Figure 1 –Sample configuration of the port expander

Details

The port expander and keypad is designed to expand the number of I/Os from a master device
that has a limited number of pins for input and output.

Design Specs [Optional design choices]

Registers

The suggested register file for this device is 5 registers 16bits wide. Registers 0x00 through
0x04 are described below.

Figure 2 shows some of the registers the in the device that control the setup. Register (a),
called the Keypad Control Register, uses the Keypad bit (bit 0) to determine if the keypad
control registers are in use or not. Row0 to Row3 and Col0 to Col2 are loaded with the size of
the keypad matrix. For example, 0xF2 means that the keypad is in use and has 7 output
columns and 2 input rows that are in use for a 7x2 keypad matrix. The first 9 pins, GPIO 0 –
GPIO 8, will be used for this keypad matrix, and the first 7 pins will be programmed as outputs
and the last 2 pins as inputs. The remaining 7 GPIO pins can be used as general I/O pins noting
that any general purpose register functions that try to affect the first 9 pins will be masked out.
For example, trying to make pin 0 an interrupt would have no effect. The 8 unused bits (bit 8-
15) of the Keypad Control Register are not used for anything.

Register (b) and (c) in Figure 2 are the Interrupt Register. For any GPIO pins in input mode they
can be programmed to send an interrupt if the input value on the pin changes. Note that if a
GPIO pin is being used as part of the keypad matrix that the values in these registers have no
effect.

Registers (d) and (e) in Figure 2 are the Direction registers. This determines the direction of the
GPIO pin as either an input pin or an output pin. Note that if a GPIO pin is being used as part of
the keypad matrix that the values in these registers have no effect, since the keypad
configuration overrides the direction of these registers.

Register (f) and (g) hold the values of the GPIO pins. If a read is performed on these registers
the master must know which pins are in input mode, since the read of GPIOs programmed as
output ports has no meaning. Similarly, a write to these registers will not overwrite GPIO
values that are set to read (this is likely determined by masking a write with the Direction
register).

In addition to the registers shown, there is a need for a FIFO that contains a record of the key-
presses detected on the keypad matrix. This FIFO buffer can buffer 16 key-presses. A read on
address 0x04 will cause the device to send a 16 bit result (on the SI output) for the keypad

coordinates of the front of the FIFO of keypresses. The first 8 bits describe the row pressed and
the second 8 bits describe the column pressed.

GPIO 0GPIO 1GPIO 2GPIO 3GPIO 4GPIO 5GPIO 6GPIO 7

(f) Value Register A

GPIO 8GPIO 9GPIO 10GPIO 11GPIO 12GPIO 13GPIO 14GPIO 15

(g) Value Register B

DIR 8DIR 9DIR 10DIR 11DIR 12DIR 13DIR 14DIR 15

(e) Direction Register B

DIR 0DIR 1DIR 2DIR 3DIR 4DIR 5DIR 6DIR 7

(d) Direction Register A

INT 8INT 9INT 10INT 11INT 12INT 13INT 14INT 15

(c) Interrupt Register B

INT 0INT 1INT 2INT 3INT 4INT 5INT 6INT 7

(b) Interrupt Register A

Keypad Row0Row1Row2Col0Col1Col2 Row3

(a) Keypad Control Register

0x00

0x01

0x01

0x02

0x02

0x03

0x03

Bit 0Bit 7

Bit 0Bit 7

Bit 8Bit 15

Bit 0Bit 7

Bit 8Bit 15

Bit 0Bit 7

Bit 8Bit 15

Bit 0Bit 7

Figure 2 – The potential control registers

Serial Bus Communication

The Serial Peripheral Interface (SPI) interface has the following specifications for this chip acting
as a slave on the SPI.

Master write

Figure 3 – A write message from the master

The master can write to any of the registers with a packet similar to the one in Figure 3. The
first bit is set to indicate a write message. Address bits A6-A0 tell the slave which register is to
be written to. D15-D0 contains the bits that are to be written.

The pin SS is set to tell this device that the packet on the bus is meant for it. This is not shown
in the timing diagram in Figure 3.

Read

Figure 4 – A read message from the master and reply from the slave

The read on the serial bus is shown in Figure 4. Again, the master sends a bit to indicate a read
and the address of the register to be read in bits A6-A0. Once the 8 bits are sent by the master,
the slave responds on the clock with the 16 bits (D15-D0) of the requested register.

The slave knows that this read request is for it based on the setting of the SS signal.

Pins

There are two interrupt pins coming from the device. One interrupt pin is dedicated to the
keypresses, and the second interrupt is dedicated to GPIO interrupt pins. The keypress
interrupt details are described below. An interrupt caused by a GPIO interrupt means that a
value has changed on an input pin that is set to interrupt (programmed by the Interrupt
Register). It is the responsibility of the master to read the value of all the read registers and
determine which read input pins have changed in value.

Keypad Controller

The rows in the keypad are set as inputs and the columns of the keypad pins are output pins.
The basic operation of the keypad controller is to have either a high signal going out or a low
signal going out (in the case of a low output the input registers will need to be tied to a high
voltage) on all the output pins. Then when a key is pressed on the matrix, the switch connects
the circuit and a change is read on the input pins. This indicates that at least one key is being
pressed.

The controller proceeds to test each output matrix line individually by uniquely setting each of
these outputs and checking to see which inputs are active. In this way the column and row
coordinates tell you which key is being pressed (or possibly ghosting).

Each key press coordinates is recorded in the fifo buffer, and an interrupt signal is sent to
indicate that the keypad was pressed. Each interrupt should be accompanied by a read by the
master to take the keypress off the buffer. If the 16 keypress buffer is full, then no additional
keypresses will be added to the buffer, and will simply be lost.

Assumption: Max keypress speed is ~20 keypresses/second

GH09.B.1.portkey - Port Expander and Keypad Controller

General Description

This benchmark is a general purpose input output (GPIO) port expander and keypad controller. This is a slave device that communicates to a main controller via a serial peripheral interface (SPI) bus. There are 16 GPIO pins that can either be programmed as inputs, outputs, or part of a keypad controller that can be configured to a maximum of an 8x7 keypad matrix. Each GPIO can be programmed to send a general interrupt signal to the master device via a common interrupt output at which the device needs to be queried as to which GPIO caused the interrupt.

Features

· SPI 4 pin bus to master

· 16 programmable pins

· 8x7 keypad controller

· Programmable interrupts when in GPIO mode

Block Diagram

[image: image1.emf]Keypad

Keypad

Matrix inputs

and outputs

GPIO 0

GPIO 1

GPIO 2

GPIO 3

GPIO 4

GPIO 5

GPIO 6

GPIO 7

GPIO 8

GPIO 9

GPIO 10

GPIO 11

GPIO 12

GPIO 13

GPIO 14

GPIO 15

Programmed

as general

input or

output

SI

SO

SCLK

SS

INT0

SPI serial

bus pins

Interrupt

signals

INT1

Figure 1 –Sample configuration of the port expander

Details

The port expander and keypad is designed to expand the number of I/Os from a master device that has a limited number of pins for input and output.

Design Specs [Optional design choices]

Registers

The suggested register file for this device is 5 registers 16bits wide. Registers 0x00 through 0x04 are described below.

Figure 2 shows some of the registers the in the device that control the setup. Register (a), called the Keypad Control Register, uses the Keypad bit (bit 0) to determine if the keypad control registers are in use or not. Row0 to Row3 and Col0 to Col2 are loaded with the size of the keypad matrix. For example, 0xF2 means that the keypad is in use and has 7 output columns and 2 input rows that are in use for a 7x2 keypad matrix. The first 9 pins, GPIO 0 – GPIO 8, will be used for this keypad matrix, and the first 7 pins will be programmed as outputs and the last 2 pins as inputs. The remaining 7 GPIO pins can be used as general I/O pins noting that any general purpose register functions that try to affect the first 9 pins will be masked out. For example, trying to make pin 0 an interrupt would have no effect. The 8 unused bits (bit 8-15) of the Keypad Control Register are not used for anything.

Register (b) and (c) in Figure 2 are the Interrupt Register. For any GPIO pins in input mode they can be programmed to send an interrupt if the input value on the pin changes. Note that if a GPIO pin is being used as part of the keypad matrix that the values in these registers have no effect.

Registers (d) and (e) in Figure 2 are the Direction registers. This determines the direction of the GPIO pin as either an input pin or an output pin. Note that if a GPIO pin is being used as part of the keypad matrix that the values in these registers have no effect, since the keypad configuration overrides the direction of these registers.

Register (f) and (g) hold the values of the GPIO pins. If a read is performed on these registers the master must know which pins are in input mode, since the read of GPIOs programmed as output ports has no meaning. Similarly, a write to these registers will not overwrite GPIO values that are set to read (this is likely determined by masking a write with the Direction register).

In addition to the registers shown, there is a need for a FIFO that contains a record of the key-presses detected on the keypad matrix. This FIFO buffer can buffer 16 key-presses. A read on address 0x04 will cause the device to send a 16 bit result (on the SI output) for the keypad coordinates of the front of the FIFO of keypresses. The first 8 bits describe the row pressed and the second 8 bits describe the column pressed.

[image: image2.emf]GPIO 0 GPIO 1 GPIO 2 GPIO 3 GPIO 4 GPIO 5 GPIO 6 GPIO 7

(f) Value Register A

GPIO 8 GPIO 9 GPIO 10 GPIO 11 GPIO 12 GPIO 13 GPIO 14 GPIO 15

(g) Value Register B

DIR 8 DIR 9 DIR 10 DIR 11 DIR 12 DIR 13 DIR 14 DIR 15

(e) Direction Register B

DIR 0 DIR 1 DIR 2 DIR 3 DIR 4 DIR 5 DIR 6 DIR 7

(d) Direction Register A

INT 8 INT 9 INT 10 INT 11 INT 12 INT 13 INT 14 INT 15

(c) Interrupt Register B

INT 0 INT 1 INT 2 INT 3 INT 4 INT 5 INT 6 INT 7

(b) Interrupt Register A

Keypad Row0 Row1 Row2 Col0 Col1 Col2 Row3

(a) Keypad Control Register

0x00

0x01

0x01

0x02

0x02

0x03

0x03

Bit 0 Bit 7

Bit 0 Bit 7

Bit 8 Bit 15

Bit 0 Bit 7

Bit 8 Bit 15

Bit 0 Bit 7

Bit 8 Bit 15

Bit 0 Bit 7

Figure 2 – The potential control registers

Serial Bus Communication

The Serial Peripheral Interface (SPI) interface has the following specifications for this chip acting as a slave on the SPI.

Master write

[image: image3.emf]R/W A6 A5 A4 A2 A1 A0 A3 SI

SCLK

D8 D15 D14 D13 D11 D10 D9 D12 D0 D7 D6 D5 D3 D2 D1 D4

Figure 3 – A write message from the master

The master can write to any of the registers with a packet similar to the one in Figure 3. The first bit is set to indicate a write message. Address bits A6-A0 tell the slave which register is to be written to. D15-D0 contains the bits that are to be written.

The pin SS is set to tell this device that the packet on the bus is meant for it. This is not shown in the timing diagram in Figure 3.

Read

[image: image4.emf]R/W A6 A5 A4 A2 A1 A0 A3 SI

SCLK

D8 D15 D14 D13 D11 D10 D9 D12

SO

D0 D7 D6 D5 D3 D2 D1 D4

Figure 4 – A read message from the master and reply from the slave

The read on the serial bus is shown in Figure 4. Again, the master sends a bit to indicate a read and the address of the register to be read in bits A6-A0. Once the 8 bits are sent by the master, the slave responds on the clock with the 16 bits (D15-D0) of the requested register.

The slave knows that this read request is for it based on the setting of the SS signal.

Pins

There are two interrupt pins coming from the device. One interrupt pin is dedicated to the keypresses, and the second interrupt is dedicated to GPIO interrupt pins. The keypress interrupt details are described below. An interrupt caused by a GPIO interrupt means that a value has changed on an input pin that is set to interrupt (programmed by the Interrupt Register). It is the responsibility of the master to read the value of all the read registers and determine which read input pins have changed in value.

Keypad Controller

The rows in the keypad are set as inputs and the columns of the keypad pins are output pins. The basic operation of the keypad controller is to have either a high signal going out or a low signal going out (in the case of a low output the input registers will need to be tied to a high voltage) on all the output pins. Then when a key is pressed on the matrix, the switch connects the circuit and a change is read on the input pins. This indicates that at least one key is being pressed.

The controller proceeds to test each output matrix line individually by uniquely setting each of these outputs and checking to see which inputs are active. In this way the column and row coordinates tell you which key is being pressed (or possibly ghosting).

Each key press coordinates is recorded in the fifo buffer, and an interrupt signal is sent to indicate that the keypad was pressed. Each interrupt should be accompanied by a read by the master to take the keypress off the buffer. If the 16 keypress buffer is full, then no additional keypresses will be added to the buffer, and will simply be lost.

Assumption: Max keypress speed is ~20 keypresses/second

_1271676873.vsd

R/W

A6

A5

A4

A2

A1

A0

A3

D8

D15

D14

D13

D11

D10

D9

D12

SI

SCLK

D0

D7

D6

D5

D3

D2

D1

D4

_1273668123.vsd

Keypad

Keypad Matrix inputs and outputs

GPIO 0

GPIO 1

GPIO 2

GPIO 3

GPIO 4

GPIO 5

GPIO 6

GPIO 7

GPIO 8

GPIO 9

GPIO 10

GPIO 11

GPIO 12

GPIO 13

GPIO 14

GPIO 15

Programmed as general input or output

SI

SO

SCLK

SS

INT0

SPI serial bus pins

Interrupt signals

INT1

_1271676912.vsd

R/W

A6

A5

A4

A2

A1

A0

A3

SI

SCLK

D8

D15

D14

D13

D11

D10

D9

D12

SO

D0

D7

D6

D5

D3

D2

D1

D4

_1271675582.vsd

GPIO 1

GPIO 0

GPIO 2

GPIO 3

GPIO 4

GPIO 5

GPIO 6

GPIO 7

(f) Value Register A

GPIO 8

GPIO 9

GPIO 10

GPIO 11

GPIO 12

GPIO 13

GPIO 14

GPIO 15

(g) Value Register B

DIR 8

DIR 9

DIR 10

DIR 11

DIR 12

DIR 13

DIR 14

DIR 15

(e) Direction Register B

DIR 0

DIR 1

DIR 2

DIR 3

DIR 4

DIR 5

DIR 6

DIR 7

(d) Direction Register A

INT 8

INT 9

INT 10

INT 11

INT 12

INT 13

INT 14

INT 15

(c) Interrupt Register B

INT 0

INT 1

INT 2

INT 3

INT 4

INT 5

INT 6

INT 7

(b) Interrupt Register A

Keypad

Row0

Row1

Row2

Col0

Col1

Col2

Row3

(a) Keypad Control Register

0x00

0x01

0x01

0x02

0x02

0x03

0x03

Bit 0

Bit 7

Bit 0

Bit 7

Bit 8

Bit 15

Bit 0

Bit 7

Bit 8

Bit 15

Bit 0

Bit 7

Bit 8

Bit 15

Bit 0

Bit 7

