
GroundHog 2009 – Energy

Benchmarking for reconfigurable

architectures on mobile computing

devices

Executive Summary

GroundHog 2009 benchmark suite has been created to motivate and evaluate the energy

consumption of reconfigurable architectures in the domain of mobile computing. For this

reason a number of concepts have been introduced to make this possible that did not exist with

current publicly available benchmarks in this domain.

The details contained in this document, additional specifications, and infrastructure tools are

meant to assist in benchmarking reconfigurable devices in the mobile domain. This document

and the additional materials should be used by individuals who understand how to create and

map designs to reconfigurable architectures, and who have the ability to measure the power

consumption of these devices when stimulated by inputs. The infrastructure tool is written in

C, includes external libraries (that may need to be installed), and is tested in a Linux

environment.

The key goals of this benchmark suite are:

• Allow mobile device manufacturers to evaluate reconfigurable architectures for their

desired purposes.

• Motivate researchers to improve architectures and tools in the mobile device power

domain and allow comparison of these innovations.

• Create designs that are simple, but representative of a range of designs targeting mobile

devices. To achieve this, describe these designs in a technology independent format.

• Avoid potential drawbacks and argument over the benchmarks and implementations of

the benchmarks where they are simply used to compare A vs B. Instead, we provide a

defined relationship with reconfigurable architecture vendors and mobile device

manufacturers, from which benchmarking is dealt with. The academic community will

have access to these benchmarks and use them in a similar manner to pre-existing

benchmark suites.

Figure 1 shows a view of the benchmark suite, and how this suite is used by benchmark users

including the environment which defines the constraints on devices. The details provided in the

GroundHog Benchmark suite provide the means for benchmarking these devices. The

benchmark user, however, is expected to implement the designs on their devices, create a test

bench to stimulate their designs based on provided workloads, and measure the energy

consumption of their system. We have made an attempt to make GroundHog benchmark suite

a guideline for this process and many of the details are left for agreement between the

benchmark implementers and the mobile device manufacturers who define the environment in

which reconfigurable technologies will operate in.

System Under Test

(SUT)

Benchmark User

Creates design and

maps to device –

Using the Design

specification

Benchmark User

Creates testbench -

Using either software or

XML output

Functional Software

(Golden Model)

Benchmark

Providers

Benchmark

Users

Environment

Benchmark: w.1.GH09.B.2

Design B.2 - High level definition in terms of:
- Algorithms

- Signal definition and Timing diagrams

- Chip specification

Workload – Timeline of events (stimuli)
Randomly

generated

pulse wave

Timeline

Waveform and event

generator –

Creates waveform and

event using parameters

and random numbers

Waveforms – XML file

Waveform parameters: w.0.GH09.B.1

Waveform parameters: w.1.GH09.B.1

Waveform parameters: w.0.GH09.B.2

Waveform parameters: w.1.GH09.B.2

Waveform parameters: w.0.GH09.B.3

Waveform parameters: w.1.GH09.B.3

Waveform parameters: w.0.GH09.B.4

Waveform parameters: w.1.GH09.B.4

Waveform parameters: w.0.GH09.B.5

Waveform parameters: w.1.GH09.B.5

Waveform parameters: w.0.GH09.B.6

Waveform parameters: w.1.GH09.B.6

BENCHMARK SUITE

Benchmark: w.0.GH09.B.1

Workload Designs
Benchmark: w.1.GH09.B.1

Workload Designs
Benchmark: w.0.GH09.B.2

Workload Designs
Benchmark: w.1.GH09.B.2

Workload Designs
Benchmark: w.0.GH09.B.3

Workload Designs
Benchmark: w.1.GH09.B.3

Workload Designs
Benchmark: w.0.GH09.B.4

Workload Designs
Benchmark: w.1.GH09.B.4

Workload Designs
Benchmark: w.0.GH09.B.5

Workload Designs
Benchmark: w.1.GH09.B.5

Workload Designs
Benchmark: w.0.GH09.B.6

Workload Designs
Benchmark: w.1.GH09.B.6

Workload Design

{{{GH09.B.4

{GH09.B.5

{GH09.B.6

{GH09.B.1

GH09.B.2

GH09.B.3

Output Verification: out.w.1.GH09.B.6

– XML file
...

<event>

 <time>185099104032ns</time>

 <resource>

 <name>output</name>

 <value0>a45</value0>

 </resource>

</event>

<event>

...
V
e
ri
fy
 o
u
tp
u
ts

Test bench:

- Runs scenarios

- Timing, input

vectors

Specific Environment Description File (EDF)

- Minimum rate(s) for device performance

- Voltage(s)

- Temperature

Inputs Outputs

Measurement

Report

System
Measurements

Waveform parameters: w.0.GH09.B.1

Y

X

Y_variation

X_variation Z

total_time

Z_variation

Figure 1 – In this figure the groundhog benchmark suite is shown in some detail, and we

illustrate how there is a distinct separation between the benchmark, users, and environment.

Introduction

GroundHog 2009 benchmark suite has been created to motivate and evaluate reconfigurable

architectures in the mobile computing domain. This document describes the elements of the

benchmark suite and how they help in evaluating solutions targeting the mobile computing

domain emphasizing the energy measurement of these solutions.

Benchmarking Philosophy

GroundHog 2009 does not simply allow the comparison of architecture A vs. architecture B for

a set of benchmarks. The reasons for this are based on some of the key goals that this

benchmark suite was created with. They are:

• Provide mobile device manufacturers with a standardized set of simple benchmarks to

help them evaluate architectures and designs in terms of energy consumption. To do

this, the architectures need to be constrained to the manufacturer’s specifications.

• Motivate researchers to improve reconfigurable architectures and tools in the mobile

device power domain and allow comparison of these innovations. Provide some

freedom for this innovation in terms of constraints on their solutions.

• Allow the designs to be implemented on a range of target systems such as FPGAs,

course grain reconfigurable architectures, and DSP processors. For this reason, the

designs in the suite are simple, and represent of a range of designs that potentially

could target mobile computation. These designs are described in a high-level

technology independent format.

Our philosophy is to avoid some previous drawbacks of benchmarks where they are simply used

to compare A vs B. Instead, we focus on providing a defined relationship with the people

creating the system under test (SUT) and the people evaluating the SUT. This relationship is

needed since we have focused on a broad range of potential architectures and target mobile

devices, and we do not want to restrict the environment for innovation.

For the cases when a specific environment needs to be constrained, we allow constraints to be

created between the system designer and the system evaluator. This means that the results

generated from measuring the energy consumption of benchmarks on a particular device are

relevant to the environment under which they are designed, and A to B comparisons is

dependent on these defined constraints.

Definitions and Concepts

The following concepts and definitions will be used throughout our benchmark:

• Design – A design is a description of the problem to be solved by a computation device.

• System Under Test (SUT) – This is the architecture/device that implements the set of

designs in the benchmark suite. The SUT takes in inputs and generates outputs, and it

will be measured in terms of energy consumption.

• Workload – A description of what inputs will be sent to a SUT for a given design.

• Benchmark – The combination of a design and a workload. Note that there are multiple

workloads for each design, and for this reason we don’t call a design a benchmark (as is

more traditional).

• Benchmark suite providers – This describes the creators of the benchmark suite and this

document.

• Benchmark users – This describes the people that implement a design on a device which

becomes the SUT, implement the system to send input stimuli, and benchmark the SUT.

• Benchmark implementers – Same as benchmark user.

• Environment description – This is a description of the environment under which the SUT

is created. This can be used by mobile device manufacturers to describe the constraints

under which the SUT must be used/designed. The environment can also specify some

common constraints under which academics would like to design their SUT and compare

their results.

• Environment description file (EDF)– This is an XML file containing the environment

description.

• Environment specifiers – These are the people that provide the environment

description. This concept allows for a relationship between the benchmark users and

the environment specifiers that are completely independent of the benchmark suite

providers.

• Energy consumption – This is the amount of energy that a SUT uses during the execution

of a benchmark.

What is included in the GroundHog 2009 Benchmark Suite?

This benchmark suite is provided by the benchmark suite providers and includes the following:

• A fabric analysis benchmark for quickly evaluating the energy consumption of the logic

fabric of a fine-grained FPGA.

o This benchmark is called GH09.B.0 and is described further in the document

“GH09.B.0.fabric_analysis_spec.pdf”

• Six high-level design descriptions and associated workloads that represent a range of

applications and input stimuli that might be used within the mobile computing domain.

The six benchmarks are:

o GH09.B.1.portkey - Port Expander and Keypad Controller

o GH09.B.2.glue - Glue logic consisting of state machines that control counters

o GH09.B.3.crypto - Cryptography using a simple AES encryption algorithm

o GH09.B.4.compress - Data compression using a simple Lziv algorithm

o GH09.B.5.bridge – A bridge chip that converts requests from masters on a

parallel bus for a slave on a serial bus

o GH09.B.6.2dcon – A generalized 2D convolution algorithm

• A software tool that creates the workloads and outputs these workloads in an XML file.

These workloads in either XML form or using internal data structures can be used to

create a test bench for the SUT.

• A software tool that simulates the behaviour of a benchmark, and outputs an XML file

that details the output response of the SUT for the respective workload. This tool is

used to verify the correct behaviour of the SUT.

• Documentation (including this document) that explain this benchmark suite and the

included tools.

What is a benchmark user expected to do?

As already described, the GroundHog 2009 benchmark suite does not provide synthesizable or

compile ready designs. This means that benchmark users will need to create and map the six

designs onto the SUT that they will measure energy consumption of. During this creation

process, the benchmark user is expected to use the environment description (provided either

externally or by themselves) as the set of constraints on their system. For example, the

environment description file might specify that the main clock speed that the SUT will be used

is 100 MHz.

In addition to this mapping process, the workloads need to be fed into the SUT. The benchmark

users, therefore, have to build some test system that uses the information in a workload and

converts it into a form that can be inputted to their SUT.

The benchmark user is expected to verify that their SUT is performing correctly. Once the SUT

is correctly executing a specified design with its respective workload and constrained by the

environment description, then the SUT can be measured for energy consumption over the

execution of a complete workload.

The reality is that the benchmark user is expected to do many tasks to get measurements from

their chosen device. We have made an effort to specify designs that are simple, and these

designs should be easily developed into synthesizable and compile ready designs. Over time, it

is expected that there will be a repository of these designs that will provide for good examples

and possibly complete solutions for design specifications.

Structure of this distribution

We briefly describe the directory structure of the GroundHog benchmark suite distribution:

• GROUNDHOG_DISTRIBUTION

o groundhog_09_meta_document.pdf – this file

o workload_description.pdf – a file describing the xml tags in a workload

o ENVIRONMENT_FILES – contains sample environment files

� 32MHz_environment_sample.xml

� 100MHz_environment_sample.xml

o BENCHMARK – this is the top level for the benchmark details.

� GH09.B.0

• Design spec

• HDL – container for the HDL files

� GH09.B.1.portkey

• GH09.B.1.portkey_spec_sheet.pdf

• GH09.B.1.portkey_workload_desc.pdf

� GH09.B.2.glue

• GH09.B.2.glue_spec_sheet.pdf

• GH09.B.2.glue_workload_desc.pdf

� GH09.B.3.crypto

• RELATED_DOCUMENTS

o fips-197.pdf

• GH09.B.3.crypto_spec_sheet.pdf

• GH09.B.3.crypto_workload_desc.pdf

� GH09.B.4.compress

• GH09.B.4.compress_spec_sheet.pdf

• GH09.B.4.compress_workload_desc.pdf

� GH09.B.5.bridge

• RELATED_DOCUMENTS

o wishbone_spec_b3.pdf

• GH09.B.5.bridge_spec_sheet.pdf

• GH09.B.5.bridge_workload_desc.pdf

� GH09.B.6.2dcon

• GH09.B.6.2dcon_spec_sheet.pdf

• GH09.B.6.2dcon_workload_desc.pdf

o BENCHMARK_INFRASTRUTURE – this is the top level container for all the tools

included in the benchmark distribution.

� GROUNDHOG_INFRASTRUCTURE_TOOL – details of directory not

expanded please see README.txt and further documentation

Methods and Setup

In this section, we describe more detailed description of what is included in the benchmark

suite and how to use the benchmark suite. Note that this description is a guideline for using

the benchmark suite. We do not take the stand that there are explicit rules that must be

satisfied to create a proper benchmark report. Instead, the relationship between the

benchmark user and environment specifiers (for example, an FPGA manufacturer and a cell

phone manufacturer) will determine specific rules that must be adhered to when benchmarking

a SUT. Instead, we provide an infrastructure and basic guidelines on how to perform

benchmarking.

We expect that the benchmark suite will be used by benchmark users while maintaining

scientific rigour. This means that assumptions and design decisions should be reported in

addition to the measurements of their respective SUT.

How to create a benchmark?

A benchmark is an implementation of a design on a SUT executed with a workload. This

definition of benchmark as a combination of workload and synthesizable design differs from

traditional notions of benchmarks. In this section, we will describe what a design description

includes, how to interpret these design specifications, what a workload is, and how to use a

workload to create a test bench.

Design specifications

Each of the six design specification, GH09.B.1 – GH09.B.6, is described in a similar fashion. We

model specifications from chip specifications where the document attempts to describe how a

chip operates. Unfortunately, the six benchmarks have different characteristics from one

another, and we can not use one common method of describing the behaviour for all the

specifications. For this reason, each specification includes a mixture of signal descriptions,

algorithmic descriptions, citations to standardized descriptions (which are also included in the

distribution), and written descriptions.

Each design specification includes the following sections:

• General description – this section gives a high-level view of what the design is.

• Features – this section describes key features of the design including items such as bit-

widths, algorithmic standards, and protocol standards.

• Block diagram – this is a high-level view of the design implemented as a self contained

block in a system. The inputs and outputs described here are a representation of

needed inputs and outputs to implement a logical view of the design.

• Details – this section describes details about the design.

Using this design specification, the benchmark users can implement the design on their chosen

device. The question, however, remains in what detail must the implementation meet the

specification.

In terms of operational constraints such as following a standard that defines algorithmic

behaviour, it is expected that the design will follow these standards exactly. For example,

GH09.B.3.crypto is meant to specify the AES-128 cipher. The implementation needs to follow

this standard strictly for the defined bit-widths as specified.

The input and output standards described in the design specifications are logical views of

transferring signals in and out of the SUT. This logical view aligns with the workloads, but when

these designs are implemented, it is expected that more layers of input output may be layered

on top of the logical view. For example, modern FPGAs include high-speed serial transmission

pins. A design implemented on these devices may use this capability to transmit data, which

then should obey the protocols described within the design specifications.

The design specifications do not include all signals that may be needed to implement the design

in a SUT. For example, all workloads include a reset event, but no design specification mentions

the need for a reset signal. It is expected that additional signals will be included in

implementations of the designs. Additional signals may be introduced by the relationship

between the benchmark user and the environment specifiers, or it is possible additional signals

may be introduced to allow for some sort of optimization (for example a communication port

with a supervisor sensor). In all cases, these details should be reported, and any energy

measurements need to include energy consumed by these signals.

Workloads

Workloads are descriptions of the input stimuli sent to a SUT implementing a specific design

specification. As described earlier the combination of a workload and an implemented design

specification forms a benchmark.

Workloads are built based on events where an event is a time and associated action(s).

Therefore, a workload is a series of times and associated actions. The times and associated

actions in a workload are sorted sequentially in time starting from the earliest event and

sequentially continuing to the last event.

Figure 2 – A view of one period of a randomly generated pulse wave and parameters describing

that wave.

Event Burst

Tevent in burst

Per Burst

Variation

Figure 3 – A zoomed in view of the event burst where the vertical lines represent an event.

The workloads within the GroundHog 2009 benchmark suite are created synthetically based on

parameters that describe a pulse wave. These parameters are shown in Figure 2 and Figure 3,

where an event burst (Tburst) is the time in a pulse wave in which events happen every Tevent_burst

time units. Each burst occurs at a period defined by the parameter Tperiod.

Figure 4 – An example of a randomly generated wave and what a workload timeline might look

like showing where the events happen.

Given these wave parameters, parameters for random time deviation in the wave, total time of

workload execution, and a random model for what input events happen, we generate a

sequence of events that represent the workload. Figure 4 represents a view of a synthetically

generated wave and events on a timeline.

For the GroundHog benchmark suite, we have created a set of workloads defined by a default

waveform file. This default set of waveform parameters is replicated in a workload description

file that accompanies each design description.

An infrastructure tool is provided in this benchmark release that takes the default waveform file

(that includes the defined waveforms) and can create an XML output file representing the

events. These output files can be restrictively large, and for this reason, we have supplied the

tool as open source so that the test bench developers can use this workload generation tool

itself to create their test benches. In either case, the XML file or internal data structures

representing a workload need to be converted into a form that will feed input stimuli to the

SUT.

The test bench designer needs to understand the events in the workload and what they mean.

Workload events can either be macro events that represent a combination of stimuli (either

sequential or parallel) or events can be simple signal events where the event explicitly names a

signal and a corresponding value. The events associated with a workload are explained in more

depth in the associated workload description files included in the directories containing the

design specification.

Time for each event is defined as the point on the timeline at which an event starts to happen.

The duration of the event is dependent on if this is a macro event or not. In most cases the

benchmark users will be able to determine how time and event are related. In those cases

where this is not true, we make an attempt in the workload descriptions to explain what

happens.

Note that the workloads are generated based on arrival rate information that is provided from

the environment description. This means that the event times are aligned to arrival rates

defined within this file. This means that these details are provided by the environment

specifiers.

How to measure a benchmark?

As described above, a benchmark is a design implemented on a chosen device and that SUT

then stimulated by a respective workload as a test bench. It is expected that each benchmark

will then be measured in terms of energy consumption. The question then is what is involved in

this measurement.

The complexities of measuring power for the wide variety of devices available mean that once

again these details are left to be decided by the relationship between the benchmark users and

the environment specifiers. There are, however, a few guidelines to follow when measuring

the SUT.

The following is a guideline of what needs to be done:

1. It is expected that the correct execution of a workload will be verified.

a. To help achieve this we have included a golden functional model in our

benchmark tools that provides an XML output with the expected outputs of a

SUT for a given workload input. This output file is a guideline of expected

outputs with annotated time estimation. This file, however, does not consider

all timing conditions and scenarios, and in some cases ordering of events is

arbitrarily chosen. For these reasons, this tool is to be used as a guideline of the

expected outputs.

2. Any measurements for a SUT should provide additional details about design criteria,

optimizations, and system details. In other words, details of the system should be

openly provided between the benchmark users and the environment specifiers. In the

case of academia, this allows for the reproduction and verification of the measured

results.

3. Benchmark measurements for energy consumption should be done for the complete

execution of the workload and include a graph of power consumption throughout that

execution. If, for some reason, a benchmark is not executed it should be reported with

a reason. The workloads have been created to stress designs in some cases, and

therefore, it is expected that SUTs will not be able to meet the demands of all the

workloads.

4. Depending on the focus of the measurements, it is not expected that all designs specs

and workloads will be measured. For example, a device manufacturer and environment

specifier may not care about the cryptography design (GH09.B.3.crypto). For this

reason, there is no need for these measurements.

Environment Details

The environment in our benchmark suite setup describes the constraints under which designs

operate on the chosen devices. This environment allows a disconnection between the

benchmark suite and the benchmark implementations. This is done so that relationships

between the benchmark implementers and environment specifiers can be independently

defined between these two groups.

To help implement this relationship we have created an Environment Description File. This is,

currently, an XML file that provides a description of the environment in an electronically

readable format. We have, however, not provided an in depth specification for this file.

Instead, the environment description file included with this release is called

“32MHz_environment_example.xml” and “100MHz_environment_example.xml”.

The “32MHz_environment_example.xml” file is replicated below:

<environment>
<minimum_operating_speed>32ns</minimum_operating_speed>
<!-- can be interpreted as fast clock (Hz) ... 32MHz -->
<minimum_sampling_speed>31250ns</minimum_sampling_speed>
<!-- can be interpreted as slow clock (Hz) (the heartbeat) .. 32 KHz -->
<minimum_arrival_rate_on_serial_interfaces>32000ns</minimum_arrival_rate_on_serial_interfaces>
<!-- can realte to the serial clock -->
<minimum_arrival_rate_on_parallel_interfaces>32000ns</minimum_arrival_rate_on_paralle_interfaces>
<!-- can relate to the parallel clock -->

</environment>

The basic xml tags that are needed within the environment file to work with the workload

generation tool are defined as:

• minimum_operating_speed – this parameter is defined in terms of a time and specifies

the operating speed of the device. If interpreted as a clock speed, then the frequency is

1/time. However, we have not made this specification since the implementation could

be asynchronous or in another format.

• minimum_sampling_speed – this parameter defines the sampling rate of the device.

This is the heartbeat of a device. This can be thought of as the sampling rate when the

device goes into standby mode or other power saving mode.

• minimum_arrival_rate_on_serial_interfaces – this parameter defines the rate of any

serial interfaces.

• minimum_arrival_rate_on_parallel_interfaces – this parameter defines the rate of any

parallel interfaces.

These parameters are defined by the environment and are passed to the provided tool

infrastructure. This information is used and included in the workload. Depending on the

relationship between benchmark users and the environment specifiers, it is possible that these

parameters will be overridden and additional parameters are specified. These additional

parameters can include items such as external resources available to be used, I/O restrictions,

available voltage rails, etc. In other words, the EDF files included with this benchmark suite are

a basic guideline of what an EDF could include.

Note that these additional details if included in the EDF are not supported by the supplied

infrastructure tools, and if some of the new factors affect the tools then changes will need to be

made in the tools by external users.

Infrastructure Tools Details

The infrastructure tools provided with this benchmark suite are bundled in one piece of

software. This software is open source to allow individuals to customize this tool for their

specific implementation details. The software is documented separately. Please refer to the

README.txt files in the GROUNDHOG_INFRASTRUCTURE_TOOL directory for more details.

At present this software tool does two things:

1. One tool creates workloads based on provided parameters. These can be outputted to

XML or used internally as a data structure. Due to the large XML files that can be

generated, it is recommended that the internal data structures in the tool are used to

create test benches as opposed to parsing XML files externally.

2. One tool Uses workloads to simulate the behaviour of a benchmark and output an XML

file that can be used as a golden model to verify a SUT running a particular workload.

These tools have been developed in a Linux environment. We have made an effort to describe

how to build these tools.

Reporting Results

As specified throughout this document, the GroundHog benchmark suite has been created to

help stimulate and evaluate solutions for reconfigurable devices for the mobile domain. There

is no need to make strict regulations on what details should be reported for the benchmarking

since we expect this benchmark suite to be used in a variety of scenarios.

In general, we expect that reports will attempt to describe and evaluate the SUT in as rigorous a

form necessary for proper evaluation by the concerned communities.

