
GH09.B.6.2dconv – 2 Dimensional
Convolution

General Description

This design is a 2 dimensional convolution core in which an original matrix and a convolution
matrix are passed in via an input, and the result matrix is passed out on an output port. The
matrices are defined in terms of signed fixed point numbers of the form fx8.16 meaning there
are 8 bits for the magnitude and 8 bits for the fractional part. The range, therefore, is 2(8-1)-1
(128) to -2(8-1) (-128).

Features

 2d Convolution for unsigned fixed point fx8.8

o 5 by 5 convolution matrix

o 400 by 400 input (original) and output matrix

Block Diagram

Figure 1 – Block diagram of the 2d convolution

Details

The 2d convolution is defined based on a mathematical equation, and the operation of the
design is based on the input and output pin protocol.

Pins
The input and output protocol defines many of the pins further below. The remaining pins are
defined as follows:

 input – this is a simple 16 bit port to pass in each fx8.16 matrix entry. The ordering is
the first 25 inputs are for the convolution matrix, and the next 160000 are for the input
matrix. [Optional] The ordering of inputs is by rows for the workload inputs.

 convolution_matrix – this signal indicates when the input contains values for the
convolution matrix.

 output – this is the output 16 bit port that sends out the convolved bits of the matrix.
[Optional] The ouputs are by rows in the same order as the inputs.

Chip Description

Equation

The execution of 2d convolution in discrete is based on two inputs: the convolution matrix (h)
of size M and the input (original) matrix (x). The convolution operation is defined by the
equation for all values of r (rows) and c (column) indices:











1

0

1

0

],[],[],[
M

j

M

i

icjrxijhcry

Basic operation

The equation, as specified above, and the input and output protocols define most of the design
with the exception of the basic operation of the device. To execute a convolution the following
steps are taken:

1. Reset the chip

2. Set the convolution matrix pin high to indicate that the next 25 input packets will
constitute the convolution matrix

3. Send the convolution matrix through the input port as specified in the Input Protocol
section (below)

4. Set the convolution matrix pin low to indicate that the input matrix data will now be
sent

5. Send in the data on the input port pins

6. Once the convolution operation is complete, then repeat starting from step 2

Input Protocol

Inputs are received using a simple handshaking protocol. The pins of importance are the input
(parallel port), the input_data_ready, the input_data_valid, the reset, and the clock. Figure 2
shows the basic communication setup between receiver (this design) and sender (external
environment), and Figure 3 shows a waveform for a simple transfer between sender and
receiver assuming the sender has one 8 bit packet to send (note that the input data width in the
examples is 8 bits as opposed to 16 bits in the actual 2D convolution design shown in Figure 1
above).

Figure 2 – The interface signals between the sender (the external environment) and the receiver
(this design).

Figure 3 – a waveform for the communication between sender and receiver for one packet.

The assumption in this simple send receive protocol is that the shared clock between sender
and receiver are synchronized. This simple interface removes much of the circuitry that would
be needed to interface between devices.

Figure 4 and 5 show the finite state diagrams of both the sender and receiver.

inp
ut

_d
at

a_
va

lid

 1

Internal data

not clocked

Figure 4 – Finite state machine for the receiver.

Reset Idle

Send Sending

reset 1

reset = 1

reset = 1

reset = 0

Data to send

input_data_accept = 1

input_data_accept = 0

No data to

send

inp
ut

_d
at

a_
ac

ce
pt

 1

input_data_valid = 0

input_data_valid = 1

input_data_valid = 0

input_data_valid = 0

Figure 5 – Finite state machine for the sender.

Output Protocol

The output protocol is a very simple protocol. When the ouput_data_valid signal is high for one
clock cycle, then the output bus contains a value. Figure 6 shows a waveform where three
output values (val0, val1, and val2) are sent out of from the design.

Figure 6 – A waveform showing the output being sent and the corresponding output_data_valid
signal.

GH09.B.6.2dconv – 2 Dimensional Convolution

General Description

This design is a 2 dimensional convolution core in which an original matrix and a convolution matrix are passed in via an input, and the result matrix is passed out on an output port. The matrices are defined in terms of signed fixed point numbers of the form fx8.16 meaning there are 8 bits for the magnitude and 8 bits for the fractional part. The range, therefore, is 2(8-1)-1 (128) to -2(8-1) (-128).

Features

· 2d Convolution for unsigned fixed point fx8.8

· 5 by 5 convolution matrix

· 400 by 400 input (original) and output matrix

Block Diagram

[image: image1.emf]output

input

16

input_data_accept

16

input_data_valid

output_data_valid

convolution_matrix

Figure 1 – Block diagram of the 2d convolution

Details

The 2d convolution is defined based on a mathematical equation, and the operation of the design is based on the input and output pin protocol.

Pins

The input and output protocol defines many of the pins further below. The remaining pins are defined as follows:

· input – this is a simple 16 bit port to pass in each fx8.16 matrix entry. The ordering is the first 25 inputs are for the convolution matrix, and the next 160000 are for the input matrix. [Optional] The ordering of inputs is by rows for the workload inputs.

· convolution_matrix – this signal indicates when the input contains values for the convolution matrix.

· output – this is the output 16 bit port that sends out the convolved bits of the matrix. [Optional] The ouputs are by rows in the same order as the inputs.

Chip Description

Equation

The execution of 2d convolution in discrete is based on two inputs: the convolution matrix (h) of size M and the input (original) matrix (x). The convolution operation is defined by the equation for all values of r (rows) and c (column) indices:

[image: image2.wmf]å

å

-

=

-

=

-

-

·

=

1

0

1

0

]

,

[

]

,

[

]

,

[

M

j

M

i

i

c

j

r

x

i

j

h

c

r

y

Basic operation

The equation, as specified above, and the input and output protocols define most of the design with the exception of the basic operation of the device. To execute a convolution the following steps are taken:

1. Reset the chip

2. Set the convolution matrix pin high to indicate that the next 25 input packets will constitute the convolution matrix

3. Send the convolution matrix through the input port as specified in the Input Protocol section (below)

4. Set the convolution matrix pin low to indicate that the input matrix data will now be sent

5. Send in the data on the input port pins

6. Once the convolution operation is complete, then repeat starting from step 2

Input Protocol

Inputs are received using a simple handshaking protocol. The pins of importance are the input (parallel port), the input_data_ready, the input_data_valid, the reset, and the clock. Figure 2 shows the basic communication setup between receiver (this design) and sender (external environment), and Figure 3 shows a waveform for a simple transfer between sender and receiver assuming the sender has one 8 bit packet to send (note that the input data width in the examples is 8 bits as opposed to 16 bits in the actual 2D convolution design shown in Figure 1 above).

[image: image3.emf]Sender Receiver

clock

input

8

input_data_valid

input_data_accept

reset

Figure 2 – The interface signals between the sender (the external environment) and the receiver (this design).

[image: image4.emf]clock

reset

input

input_data_accept

input_data_valid

8'b00100100 8'b01110100

Figure 3 – a waveform for the communication between sender and receiver for one packet.

The assumption in this simple send receive protocol is that the shared clock between sender and receiver are synchronized. This simple interface removes much of the circuitry that would be needed to interface between devices.

Figure 4 and 5 show the finite state diagrams of both the sender and receiver.

[image: image5.emf]Reset Idle

Received

reset = 1

reset = 1

reset = 1

Internal

data

clocked

input_data_valid = 0

i

n

p

u

t

_

d

a

t

a

_

v

a

l

i

d

=

1

I

n

t

e

r

n

a

l

d

a

t

a

n

o

t

c

l

o

c

k

e

d

reset = 0

input_data_valid = 0

Receiving

input_data_accept = 0

input_data_accept = 0

input_data_accept = 1

input_data_accept = 1

Figure 4 – Finite state machine for the receiver.

[image: image6.emf]Reset Idle

Send Sending

r

e

s

e

t

=

1

reset = 1

reset = 1

reset = 0

D

a

t

a

t

o

s

e

n

d

input_data_accept = 1

input_data_accept = 0

N

o

d

a

t

a

t

o

s

e

n

d

i

n

p

u

t

_

d

a

t

a

_

a

c

c

e

p

t

=

1

input_data_valid = 0

input_data_valid = 1

input_data_valid = 0

input_data_valid = 0

Figure 5 – Finite state machine for the sender.

Output Protocol

The output protocol is a very simple protocol. When the ouput_data_valid signal is high for one clock cycle, then the output bus contains a value. Figure 6 shows a waveform where three output values (val0, val1, and val2) are sent out of from the design.

[image: image7.emf]clock

reset

output

output_data_valid

val0 val1 val2

Figure 6 – A waveform showing the output being sent and the corresponding output_data_valid signal.

_1280838414.unknown

_1285768775.vsd

output

input

16

input_data_accept

16

input_data_valid

output_data_valid

convolution_matrix

_1274185173.vsd

Sender

Receiver

clock

input

8

input_data_valid

input_data_accept

reset

_1274185190.vsd

Reset

Idle

Receiving

Received

reset = 1

reset = 1

reset = 1

Internal data clocked

input_data_valid = 1

input_data_valid = 0

Internal data not clocked

reset = 0

input_data_valid = 0

input_data_accept = 0

input_data_accept = 0

input_data_accept = 1

input_data_accept = 1

_1274185211.vsd

input_data_accept = 1

input_data_valid = 0

input_data_valid = 1

input_data_valid = 0

Reset

Idle

Send

Sending

reset = 1

reset = 1

reset = 1

reset = 0

Data to send

input_data_accept = 1

input_data_accept = 0

No data to
send

input_data_valid = 0

_1274185160.vsd

clock

reset

input_data_accept

input

8'b00100100

8'b01110100

input_data_valid

_1273566956.vsd

clock

reset

output

output_data_valid

val0

val1

val2

