GHO09.B.3.crypto - Encryption

General Description

This is an Encryption algorithm based on Advanced Encryption Standard (defined in the Federal
Information Processing Standards Publication 197). AES is a block cipher algorithm used and
defined by the U.S. government.

Features

e AES-128 cypher
o 128 bit cryptographic key.

o 128 bit data blocks.

Block Diagram

—p» | key

16

=9 |input

— | input_data_valid
16

< | output

<«— |input_data_accept

<«— | output_data_valid

Figure 1 — Block diagram of the AES encryption core and the input and output signals

Details

The AES-128 design is based on the (FIPS 197 specification) for 128 bit key and blocks of data.
The full description of the algorithm is in FIPS 197. We will simply highlight which sections are
of key importance when implementing this design. The references will be in the form:

FIP197-X.Y pg(s) A-B

Where FIP197 refers to the document, X is the section number, Y is the subsection number, A is
the start page for the page range, and B is the end page for the page range.

Algorithm

For this design only the cipher portion of the algorithm must be built. This portion of the
algorithm converts plaintext (FIP197-2.1 pg8) to cyphertext (FIP197-2.1 pg 8).

The input to the chip will be in the form as described in FIP197-3.2 and FIP197-3.3 pgs 8 and 9.
Since both input and output bits to the chip are in parallel, assume that the least significant bit
of a port corresponds to “Input bit sequence” 0 as in Figure 2 FIP197-3.3 pg 9 also known as
input0. Respectively, the most significant bit of a port corresponds to “Input bit sequence” 127
also known as input127.

The AES cipher algorithm is defined on pages FIP197-5 pgs 13-20.

Chip Description

Basic operation

The algorithm, as specified above, and the input and output protocols define most of the design
with the exception of the basic operation of the device. To use the aes encryption the following
steps are taken:

e Reset the chip

e Set the key pin high to indicate that the next 8 input packets will make up the
encryption key

e Send the encryption key through the input port as specified in the Input Protocol section
e Set the key pin low to indicate that data will now be sent

e Send in the data on the input port pins

The reason for this setup is to keep the number of pins needed for data input relatively low,
and thus, allow smaller devices to implement the AES encryption.

Input Protocol

Inputs are received using a simple handshaking protocol. The pins of importance are the input
(parallel port), the input_data_ready, the input_data_valid, the reset, and the clock. Figure 2
shows the basic communication setup between receiver (this design) and sender (external
environment), and Figure 3 shows a waveform for a simple transfer between sender and
receiver assuming the sender has one 8 bit packet to send (note that the input data width in the
examples is 8 bits as opposed to 128 bits in the actual AES design shown in Figure 1 above).

8
\ |
Y input '
i
- input_data_accept .
- - » | Receiver
. . »
input_data_valid
>
clock
A .
»

reset

Figure 2 — The interface signals between the sender (the external environment) and the receiver
(this design).

clock

reset

input_data_valid

input_data_accept

input

XL
[

8'b00100100 X 8'n01110100

Figure 3 — a waveform for the communication between sender and receiver for one packet.

The assumption in this simple send receive protocol is that the shared clock between sender
and receiver are synchronized. This simple interface removes much of the circuitry that would
be needed to interface between devices.

Figure 4 and 5 show the finite state diagrams of both the sender and receiver.

reset =0

Idle

input_data_accept = 1

Reset

input_data_accept =

A
input_data_valid = 0

Received

input_data_accept =0

Receiving

input_data_accept = 1

Internal
data
clocked

|dle

input_data_valid =0

Reset
input_data_valid =0

input_data_accept = 0

Send < Sendin
/ \ >

input_data_valid =0 input_data_valid = 1

»
input_data_accept = 1

Figure 5 — Finite state machine for the sender.

Output Protocol

The output protocol is a very simple protocol. When the ouput_data_valid signal is high for one
clock cycle, then the output bus contains a value. Figure 6 shows a waveform where three
output values (val0, vall, and val2) are sent out of from the design.

e I I O D A
reset |
output_data_valid I—l I_l
output X valo X valt X X vaiz X

Figure 6 — A waveform showing the output being sent and the corresponding output_data_valid
signal.

GH09.B.3.crypto – Encryption

General Description

This is an Encryption algorithm based on Advanced Encryption Standard (defined in the Federal Information Processing Standards Publication 197). AES is a block cipher algorithm used and defined by the U.S. government.

Features

· AES-128 cypher

· 128 bit cryptographic key.

· 128 bit data blocks.

Block Diagram

[image: image1.emf]output

input

input_data_accept

input_data_valid

16

16

output_data_valid

key

Figure 1 – Block diagram of the AES encryption core and the input and output signals

Details

The AES-128 design is based on the (FIPS 197 specification) for 128 bit key and blocks of data. The full description of the algorithm is in FIPS 197. We will simply highlight which sections are of key importance when implementing this design. The references will be in the form:

FIP197-X.Y pg(s) A-B

Where FIP197 refers to the document, X is the section number, Y is the subsection number, A is the start page for the page range, and B is the end page for the page range.

Algorithm

For this design only the cipher portion of the algorithm must be built. This portion of the algorithm converts plaintext (FIP197-2.1 pg8) to cyphertext (FIP197-2.1 pg 8).

The input to the chip will be in the form as described in FIP197-3.2 and FIP197-3.3 pgs 8 and 9. Since both input and output bits to the chip are in parallel, assume that the least significant bit of a port corresponds to “Input bit sequence” 0 as in Figure 2 FIP197-3.3 pg 9 also known as input0. Respectively, the most significant bit of a port corresponds to “Input bit sequence” 127 also known as input127.

The AES cipher algorithm is defined on pages FIP197-5 pgs 13-20.

Chip Description

Basic operation

The algorithm, as specified above, and the input and output protocols define most of the design with the exception of the basic operation of the device. To use the aes encryption the following steps are taken:

· Reset the chip

· Set the key pin high to indicate that the next 8 input packets will make up the encryption key

· Send the encryption key through the input port as specified in the Input Protocol section

· Set the key pin low to indicate that data will now be sent

· Send in the data on the input port pins

The reason for this setup is to keep the number of pins needed for data input relatively low, and thus, allow smaller devices to implement the AES encryption.

Input Protocol

Inputs are received using a simple handshaking protocol. The pins of importance are the input (parallel port), the input_data_ready, the input_data_valid, the reset, and the clock. Figure 2 shows the basic communication setup between receiver (this design) and sender (external environment), and Figure 3 shows a waveform for a simple transfer between sender and receiver assuming the sender has one 8 bit packet to send (note that the input data width in the examples is 8 bits as opposed to 128 bits in the actual AES design shown in Figure 1 above).

[image: image2.emf]Sender Receiver

clock

input

8

input_data_valid

input_data_accept

reset

Figure 2 – The interface signals between the sender (the external environment) and the receiver (this design).

[image: image3.emf]clock

reset

input

input_data_accept

input_data_valid

8'b00100100 8'b01110100

Figure 3 – a waveform for the communication between sender and receiver for one packet.

The assumption in this simple send receive protocol is that the shared clock between sender and receiver are synchronized. This simple interface removes much of the circuitry that would be needed to interface between devices.

Figure 4 and 5 show the finite state diagrams of both the sender and receiver.

[image: image4.emf]Reset Idle

Received

reset = 1

reset = 1

reset = 1

Internal

data

clocked

input_data_valid = 0

i

n

p

u

t

_

d

a

t

a

_

v

a

l

i

d

=

1

I

n

t

e

r

n

a

l

d

a

t

a

n

o

t

c

l

o

c

k

e

d

reset = 0

input_data_valid = 0

Receiving

input_data_accept = 0

input_data_accept = 0

input_data_accept = 1

input_data_accept = 1

Figure 4 – Finite state machine for the receiver.

[image: image5.emf]Reset Idle

Send Sending

r

e

s

e

t

=

1

reset = 1

reset = 1

reset = 0

D

a

t

a

t

o

s

e

n

d

input_data_accept = 1

input_data_accept = 0

N

o

d

a

t

a

t

o

s

e

n

d

i

n

p

u

t

_

d

a

t

a

_

a

c

c

e

p

t

=

1

input_data_valid = 0

input_data_valid = 1

input_data_valid = 0

input_data_valid = 0

Figure 5 – Finite state machine for the sender.

Output Protocol

The output protocol is a very simple protocol. When the ouput_data_valid signal is high for one clock cycle, then the output bus contains a value. Figure 6 shows a waveform where three output values (val0, val1, and val2) are sent out of from the design.

[image: image6.emf]clock

reset

output

output_data_valid

val0 val1 val2

Figure 6 – A waveform showing the output being sent and the corresponding output_data_valid signal.

_1274185173.vsd

Sender

Receiver

clock

input

8

input_data_valid

input_data_accept

reset

_1274185211.vsd

input_data_accept = 1

input_data_valid = 0

input_data_valid = 1

input_data_valid = 0

Reset

Idle

Send

Sending

reset = 1

reset = 1

reset = 1

reset = 0

Data to send

input_data_accept = 1

input_data_accept = 0

No data to
send

input_data_valid = 0

_1285768878.vsd

16

16

output

input

input_data_accept

input_data_valid

output_data_valid

key

_1274185190.vsd

Reset

Idle

Receiving

Received

reset = 1

reset = 1

reset = 1

Internal data clocked

input_data_valid = 1

input_data_valid = 0

Internal data not clocked

reset = 0

input_data_valid = 0

input_data_accept = 0

input_data_accept = 0

input_data_accept = 1

input_data_accept = 1

_1274185160.vsd

clock

reset

input_data_accept

input

8'b00100100

8'b01110100

input_data_valid

_1273566956.vsd

clock

reset

output

output_data_valid

val0

val1

val2

