
FPGAs as Components in
Heterogeneous HPC Systems:

Raising the Abstraction Level of
Heterogeneous Programming

Wim Vanderbauwhede
School of Computing Science

University of Glasgow

A trip down memory lane

80 Years ago:
The Theory

Turing, Alan Mathison. "On computable numbers, with an application to the Entscheidungsproblem." J. of Math 58, no. 345-363 (1936): 5.

1936: Universal machine (Alan Turing)

1936: Lambda calculus (Alonzo Church)

1936: Stored-program concept (Konrad Zuse)

1937: Church-Turing thesis

1945: The Von Neumann architecture

Church, Alonzo. "A set of postulates for the foundation of logic." Annals of mathematics (1932): 346-366.

60-40 Years ago:
The Foundations

The first working integrated circuit, 1958. © Texas Instruments.

1957: Fortran, John Backus, IBM

1958: First IC, Jack Kilby, Texas Instruments

1965: Moore’s law

1971: First microprocessor, Texas Instruments

1972: C, Dennis Ritchie, Bell Labs

1977: Fortran-77

1977: von Neumann bottleneck, John Backus

30 Years ago:
HDLs and FPGAs

Algotronix CAL1024 FPGA, 1989. © Algotronix

1984: Verilog

1984: First reprogrammable logic device, Altera

1985: First FPGA,Xilinx

1987: VHDL Standard IEEE 1076-1987

1989: Algotronix CAL1024, the first FPGA to
offer random access to its control memory

20 Years ago:
High-level Synthesis

Page, Ian. "Closing the gap between hardware and software: hardware-software cosynthesis at Oxford." (1996): 2-2.

1996: Handel-C, Oxford University

2001: Mitrion-C, Mitrionics

2003: Bluespec, MIT

2003: MaxJ, Maxeler Technologies

2003: Impulse-C, Impulse Accelerated Technologies

2004: Catapult C, Mentor Graphics

2005: SystemVerilog, BSV

2006: AutoPilot, AutoESL (Vivado)

2007: DIME-C, Nallatech

2011: LegUp, University of Toronto

2014: Catapult, Microsoft

10 Years ago:
Heterogeneous

Computing

2007: CUDA, NVIDIA

2009: OpenCL ,Apple Inc., Khronos Group

2010: Intel Many Integrated Cores

2011: Altera OpenCL

2015: Xilinx OpenCL

FPGA programming evolution

Dow Jones index, 1985-2015

Where to next?

High-Level Synthesis
• For many years, Verilog/VHDL were good enough

• Then the complexity gap created the need for HLS.

• This reflects the rationale behind VHDL:

"A language with a wide range of descriptive capability that
was independent of technology or design methodology."

• What is lacking in this requirement is "capability for
scalable abstraction".

“C to Gates”
• "C-to-Gates" offered that higher abstraction level

• But it was in a way a return to the days before
standardised VHDL/Verilog:

the various components making up a system were
designed and verified using a wide range of
different and incompatible languages and tools.

The Choice of C
• C was designed by Ritchie for the specific
purpose of writing the UNIX operating system.

• i.e. to create a control system for a RAM-
based single-threaded system.
• It is basically a syntactic layer over assembly
language.
• Very different semantics from HDLs

• But it became the lingua franca for engineers,
and hence the de-facto language for HLS tools.

Really C?
• None of them was ever really C though:

• "C/C++ with restrictions and pragmas” (e.g. DIME-C, Vivado)

• “C with restrictions and a CSP API” (e.g. Impulse-C)

• "C-syntax language with parallel and CSP semantics”
(e.g. Handel-C, MaxJ)

• Typically, no recursion, function pointers (no stack) and
dynamic allocation (no OS)

• Until George came along …

Heterogeneous
Computing

GPUs, Manycores and FPGAs
• Accelerators attached to host systems have
become increasingly popular

• Mainly GPUs,

• But increasingly manycores (MIC, Tilera)

• And FPGAs

FPGA Size Evolution Since 2003

"On the Capability and Achievable
Performance of FPGAs for HPC
Applications"
Wim Vanderbauwhede

School of Computing Science, University of Glasgow, UK

http://www.slideshare.net/WimVanderbauwhede

Heterogeneous Programming
• State of affairs today:

• Programmer must decide what to offload

• Write host-accelerator control and data movement code
using dedicated API

• Write accelerator code using dedicated language

• Many approaches (CUDA, OpenCL, MaxJ, C++ AMP)

Programming Model
• All solutions assume data parallelism:

• Each kernel is single-threaded, works on a portion of the
data

• Programmer must identify these portions and the amount
of parallelism

• So not ideal for FPGAs

• Recent OpenCL specifications have kernel pipes allowing
construction of pipelines

• Also support for unified memory space

Performance

Nearest neighbour Lava MD Document Classification

Kernel Speed 5.345454545 4.317035156 1.306521951

Total Speed 1.603603604 4.232313328 1.037712032

0

1

2

3

4

5

6

Sp
e

e
d

-u
p

OpenCL-FPGA Speed-up vs OpenCL-CPU

Segal, Oren, Nasibeh Nasiri, Martin Margala, and Wim Vanderbauwhede. "High level programming of FPGAs for HPC and data centric applications.” Proc. IEEE HPEC 2014, pp. 1-3.

Power Savings

Nearest neighbour Lava MD Document Classification

Kernel Power 5.241358852 4.232966577 1.281079155

Total Power 1.572375533 4.149894595 1.017503956

0

1

2

3

4

5

6

P
o

w
e

r
Sa

vi
n

g

CPU/FPGA Power Consumption Ratio

Segal, Oren, Nasibeh Nasiri, Martin Margala, and Wim Vanderbauwhede. "High level programming of FPGAs for HPC and data centric applications.” Proc. IEEE HPEC 2014, pp. 1-3.

FPGAs as
Components in
Heterogeneous

Systems

Heterogeneous HPC Systems

• Modern HPC cluster node:

• Multicore/manycore host

• Accelerators: GPGPU, MIC and increasingly, FPGAs

• HPC workloads

• Very complex codebase

• Legacy code

Example: WRF

• Weather Research and Forecasting Model

• Fortran-90, support for MPI and OpenMP

• 1,263,320 lines of code

• So about ten thousand pages of code listings

• Parts of it have been accelerated manually on GPU (a few
thousands of lines)

• Changing the code for a GPU/FPGA system would be a huge
task, and the result would not be portable.

FPGAs in HPC

• FPGAs are good at some tasks, e.g.:

• Bit level, integer and string operations

• Pipeline parallelism rather than data parallelism

• Superior internal memory bandwidth

• Streaming dataflow computations

• But not so good at others

• Double-precision floating point computations

• Random memory access computations

Raising the
Abstraction

Level

One Codebase, Many Components

• For complex HPC applications, FPGAs will never be
optimal for the whole codebase

• But neither will multicores or GPUs

• So we need to be able to split the codebase
automatically over the different components in the
heterogeneous system.

• Therefore, we need to raise the abstraction level
beyond “heterogeneous programming” and “high-
level synthesis”

Today’s
high-level language

is tomorrow’s
compiler target

• Device-specific high-level abstraction is no
longer good enough

• OpenCL is relatively high-level and device-
independent, but it is still not good enough

• High-level synthesis languages and
heterogeneous programming frameworks
should be compilation targets!

• Just like assembly /IR languages and HDLs

Automatic Program
Transformations and

Cost models

• Starting from a complete, unoptimised program

• Compiler-based program transformations

• Correct-by-construction

• Component-based, hierarchical cost model for
the full system

• Optimization problem:

find the optimal program variant given the
system cost model

A Functional-Programming Approach

• For the particular case of scientific HPC codes

• Focus on array computations

• Express the program using higher-order
functions

• Type Transformation based program
transformation

Functional Programming

• There are only functions

• Functions can operate on functions

• Functions can return functions

• Syntactic sugar over the l-calculus

Types in Functional Programming

• Types are just labels to help us reason about
the values in a computation

• More general than types in e.g C

• For our purpose, we focus on types of
functions that perform array operations

• Functions are values, so they need a type

Examples of Types

-- a function f taking a vector of n values of type a and
returing a vector of m values of type b

f : Vec a n -> Vec b m

-- a function map taking a function from a to b and a
vector of type a, and returning a vector of type b

map : (a -> b) -> Vec a n -> Vec b n

Type Transformations

• Transform the type of a function into another
type

• The function transformation can be derived
automatically from the type transformation

• The type transformations are provably correct

• Thus the transformed program is correct by
construction!

Array Type Transformations

• For this talk, focus on

• Vector (array) types

• FPGA cost model

• Programs must be composed using particular
higher-order functions (correctness conditions)

• Transformations essentially reshape the arrays

Higher-order Functions

• map: perform a computation on all elements of an
array independently, e.g. square all values.

• can be done sequentially, in parallel or using a
pipeline if the computation is pipelined

• foldl: reduce an array to a value using an
accumulator, e.g. sum all values.

• can be done sequentially or, if the computation is
associative, using a binary tree

Example: SOR

• Successive Over-Relaxation (SOR) kernel from a
Large-Eddy simulator (weather simulation) in Fortran:

Example: SOR using map

• Fortran code rewritten as a map of a function over a
1-D vector

Example: Type Transformation

• Transform the 1-D vector into a 2-D vector
• The program transformation is derived

FPGA Cost Modeling

• Based on an overlay architecture 😄

Cost Calculation

• Uses an Intermediate Representation Language, the
TyTra-IR

• TyTra-IR uses LLVM syntax but can express
sequential, parallel and pipeline semantics

• Thus a direct mapping to the higher-order functions

• But the cost of computations and communication
can be computed directly from the TyTra-IR program

• No need for synthesis

code4paperSORc1.tirl Page 1

 1 ; **** COMPUTE-IR ****

 2 @main.p0 = addrSpace(12) ui18,

 3 !"istream", !"CONT", !0, !"strobj_p"

 4 @main.p1 = ...

 5 @main.p2 = ...

 6 @main.p3 = ...

 7 ;...[other inputs]...

 8 define void @f0(...args...) pipe {...}

 9 define void @f1 (...args...) par {

 10 call @f0(...args...) pipe

 11 call @f0(...args...) pipe

 12 call @f0(...args...) pipe

 13 call @f0(...args...) pipe }

 14 define void @main () {

 15 call @f1(..args...) par }

 16

 17

TyTra-IR Example

Cost Space and Cost Estimation

Logic and

Memory

Resources

Communication

Bandwidth

(local memory, global

memory, host)

Performance

(Throughput)

The Resource-Wall
(computation-bound)

The Bandwidth-Wall
(communication-bound)

Cost Model Accuracy

Resource 1-lane(E) 1-lane(G) 4-lane(E) 4-lane(G)

ALUTs 239 164 148K 146K

REGs 725 572 76628 77260

BRAM(bits) 186K 186K 449K 682K

DSPs 9 12 36 24

Cycles/Kernel 1746 1742 436 446

EWGT 190K 222K 763K 488K

Some Results

0

1

2

3

4

5

6

7

8

9

24 48 96 144 192

R
u

n
ti

m
e

 (
n

o
rm

al
is

e
d

)

im,jm,km

CPU

FPGA-MaxJ

FPGA-TyTra

Full-Program Transformation

• Type Transformations are not FPGA-specific

• Compiler can create variants for full program

• Then separate out parts of the program based on
minimal cost on given components of the system

• For parallelisation over a cluster, use Multi-Party
Session Types to transform the program into
communicating processes

Conclusions

• FPGAs have reached maturity as HPC platforms

• High-Level Synthesis and Heterogeneous
Programming are both very important steps forward,
and performance is already impressive

• But we need to raise the abstraction level even more

• Full-system compilers for heterogeneous systems

• FPGAs are merely components in such systems

• Type Transformations are one possible way

Thank you!

