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A trip down memory lane



80 Years ago: 
The Theory

Turing, Alan Mathison. "On computable numbers, with an application to the Entscheidungsproblem." J. of Math 58, no. 345-363 (1936): 5.



1936: Universal machine (Alan Turing)

1936: Lambda calculus  (Alonzo Church)

1936: Stored-program concept (Konrad Zuse)

1937: Church-Turing thesis

1945: The Von Neumann architecture

Church, Alonzo. "A set of postulates for the foundation of logic." Annals of mathematics (1932): 346-366.



60-40 Years ago: 
The Foundations

The first working integrated circuit, 1958.  © Texas Instruments.



1957: Fortran, John Backus, IBM

1958: First IC, Jack Kilby, Texas Instruments

1965: Moore’s law

1971: First microprocessor, Texas Instruments

1972: C,  Dennis Ritchie, Bell Labs

1977: Fortran-77

1977: von Neumann bottleneck, John Backus 



30 Years ago: 
HDLs and FPGAs

Algotronix CAL1024 FPGA, 1989. © Algotronix



1984: Verilog

1984: First reprogrammable logic device, Altera

1985: First FPGA,Xilinx

1987: VHDL Standard IEEE 1076-1987

1989: Algotronix CAL1024, the first FPGA to 
offer random access to its control memory



20 Years ago: 
High-level Synthesis

Page, Ian. "Closing the gap between hardware and software: hardware-software cosynthesis at Oxford." (1996): 2-2.



1996: Handel-C,  Oxford University

2001: Mitrion-C, Mitrionics

2003: Bluespec, MIT

2003: MaxJ, Maxeler Technologies

2003: Impulse-C, Impulse Accelerated Technologies

2004: Catapult C, Mentor Graphics



2005: SystemVerilog, BSV 

2006: AutoPilot, AutoESL (Vivado)

2007: DIME-C, Nallatech

2011: LegUp, University of Toronto

2014: Catapult, Microsoft 



10 Years ago:
Heterogeneous 

Computing



2007: CUDA, NVIDIA

2009: OpenCL ,Apple Inc., Khronos Group

2010: Intel Many Integrated Cores  

2011: Altera OpenCL

2015: Xilinx  OpenCL



FPGA programming evolution

Dow Jones  index, 1985-2015



Where to next?





High-Level Synthesis
• For many years, Verilog/VHDL were good enough

• Then the complexity gap created the need for HLS. 

• This reflects the rationale behind VHDL:

"A language with a wide range of descriptive capability that 
was independent of technology or design methodology."

• What is lacking in this requirement is "capability for 
scalable abstraction".



“C to Gates”
• "C-to-Gates" offered that higher abstraction level

• But it was in a way a return to the days before 
standardised VHDL/Verilog: 

the various components making up a system were 
designed and verified using a wide range of 
different and incompatible languages and tools.



The Choice of C
• C was designed by Ritchie for the specific 
purpose of writing the UNIX operating system.

• i.e. to create a control system for a RAM-
based single-threaded system. 
• It is basically a syntactic layer over assembly 
language.
• Very different semantics from HDLs

• But it became the lingua franca for engineers, 
and hence the de-facto language for HLS tools.



Really C?
• None of them was ever really C though: 

• "C/C++ with restrictions and pragmas” (e.g. DIME-C, Vivado)

• “C with restrictions and a CSP API” (e.g. Impulse-C)

• "C-syntax language with parallel and CSP semantics” 
(e.g. Handel-C, MaxJ) 

• Typically, no recursion, function pointers (no stack) and 
dynamic allocation (no OS)

• Until George came along …



Heterogeneous 
Computing



GPUs, Manycores and FPGAs
• Accelerators attached to host systems have 
become increasingly popular

• Mainly GPUs,

• But increasingly manycores (MIC, Tilera) 

• And FPGAs



FPGA Size Evolution Since 2003



"On the Capability and Achievable
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Heterogeneous Programming
• State of affairs today: 

• Programmer must decide what to offload

• Write host-accelerator control and data movement code 
using dedicated API

• Write accelerator code using dedicated language 

• Many approaches (CUDA, OpenCL, MaxJ, C++ AMP)



Programming Model
• All solutions assume data parallelism: 

• Each kernel is single-threaded, works on a portion of the 
data

• Programmer must identify these portions and the amount 
of parallelism

• So not ideal for FPGAs

• Recent OpenCL specifications have kernel pipes allowing 
construction of pipelines 

• Also support for unified  memory space



Performance

Nearest neighbour Lava MD Document Classification

Kernel Speed 5.345454545 4.317035156 1.306521951

Total Speed 1.603603604 4.232313328 1.037712032
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OpenCL-FPGA Speed-up vs OpenCL-CPU

Segal, Oren, Nasibeh Nasiri, Martin Margala, and Wim Vanderbauwhede. "High level programming of FPGAs for HPC and data centric applications.”  Proc. IEEE HPEC 2014, pp. 1-3.



Power Savings

Nearest neighbour Lava MD Document Classification

Kernel Power 5.241358852 4.232966577 1.281079155

Total Power 1.572375533 4.149894595 1.017503956
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Segal, Oren, Nasibeh Nasiri, Martin Margala, and Wim Vanderbauwhede. "High level programming of FPGAs for HPC and data centric applications.”  Proc. IEEE HPEC 2014, pp. 1-3.



FPGAs as 
Components in 
Heterogeneous 

Systems



Heterogeneous HPC Systems

• Modern HPC cluster node: 

• Multicore/manycore host

• Accelerators: GPGPU, MIC and increasingly, FPGAs

• HPC workloads

• Very complex codebase

• Legacy code





Example: WRF

• Weather Research and Forecasting Model

• Fortran-90, support for MPI and OpenMP

• 1,263,320 lines of code

• So about ten thousand pages of code listings

• Parts of it have been accelerated manually on GPU (a few 
thousands of lines)

• Changing the code for a GPU/FPGA system would be a huge 
task, and the result would not be portable.



FPGAs in HPC

• FPGAs are good at some tasks, e.g.:

• Bit level, integer and string  operations

• Pipeline parallelism rather than data parallelism

• Superior internal memory bandwidth

• Streaming dataflow computations

• But  not so good at others

• Double-precision floating point computations

• Random memory access computations



Raising the 
Abstraction

Level





One Codebase, Many Components

• For complex HPC applications, FPGAs will never be 
optimal for the whole codebase

• But neither will multicores or GPUs

• So we need to be able to split the codebase 
automatically over the different components in the 
heterogeneous system.

• Therefore, we need to raise the abstraction level 
beyond “heterogeneous programming” and “high-
level synthesis”



Today’s
high-level language

is tomorrow’s
compiler target



• Device-specific high-level abstraction is no 
longer good enough

• OpenCL is relatively high-level and device-
independent, but it is still not good enough

• High-level synthesis languages and 
heterogeneous programming frameworks 
should be compilation targets!

• Just like assembly /IR languages and HDLs



Automatic Program 
Transformations and

Cost models





• Starting from a complete, unoptimised program

• Compiler-based program transformations

• Correct-by-construction

• Component-based, hierarchical cost model for 
the full system

• Optimization problem: 

find the optimal program variant given the 
system cost model



A Functional-Programming Approach

• For the particular case of scientific HPC codes

• Focus on array computations

• Express the program using higher-order 
functions

• Type Transformation based program 
transformation



Functional Programming

• There are only functions

• Functions can operate on functions

• Functions can return functions

• Syntactic sugar over the l-calculus



Types in Functional Programming

• Types are just labels to help us reason about 
the values in a computation

• More general than types in e.g C

• For our purpose, we focus on types of 
functions that perform array operations

• Functions are values, so they need a type



Examples of Types

-- a function f taking a vector of n values of type a and 
returing a vector of m values of type b

f : Vec a n -> Vec b m

-- a function map taking a function from a to b and a 
vector of type a, and returning a vector of type b

map : (a -> b) -> Vec a n -> Vec b n



Type Transformations

• Transform the type of a function into another 
type

• The function transformation can be derived 
automatically from the type transformation

• The type transformations are provably correct

• Thus the transformed program is correct by 
construction!



Array Type Transformations

• For this talk, focus on 

• Vector (array) types

• FPGA cost model

• Programs must be composed using particular 
higher-order functions (correctness conditions)

• Transformations essentially reshape the arrays



Higher-order Functions

• map: perform a computation on all elements of an 
array independently, e.g. square all values.

• can be done sequentially, in parallel or using a 
pipeline if the computation is pipelined

• foldl:  reduce an array to a value using an 
accumulator, e.g. sum all values.

• can be done sequentially or, if the computation is 
associative, using a binary tree



Example: SOR

• Successive Over-Relaxation (SOR) kernel from a 
Large-Eddy simulator (weather simulation) in Fortran:



Example: SOR using map

• Fortran code rewritten as a map of a function over a 
1-D vector



Example: Type Transformation

• Transform the 1-D vector into a 2-D vector
• The program transformation is derived



FPGA Cost Modeling

• Based on an overlay architecture 😄



Cost Calculation

• Uses an Intermediate Representation Language, the 
TyTra-IR

• TyTra-IR uses LLVM syntax but can express 
sequential, parallel and pipeline semantics

• Thus a direct mapping to the higher-order functions

• But the cost of computations and communication 
can be computed directly from the TyTra-IR program

• No need for synthesis



code4paperSORc1.tirl                                                          Page 1

     1 ; **** COMPUTE-IR ****

     2 @main.p0  = addrSpace(12) ui18, 

     3           !"istream", !"CONT", !0, !"strobj_p" 

     4 @main.p1  = ...

     5 @main.p2  = ...

     6 @main.p3  = ...

     7 ;...[other inputs]...

     8 define void @f0(...args...) pipe {...}

     9 define void @f1 (...args...) par {

    10   call @f0(...args...) pipe

    11   call @f0(...args...) pipe

    12   call @f0(...args...) pipe

    13   call @f0(...args...) pipe }

    14 define void @main () {

    15   call @f1(..args...) par }

    16

    17

TyTra-IR Example



Cost Space and Cost Estimation

Logic and 

Memory 

Resources 

Communication 

Bandwidth 

(local memory, global 

memory, host) 

Performance 

(Throughput) 

The Resource-Wall 
(computation-bound) 

The Bandwidth-Wall 
(communication-bound) 



Cost Model Accuracy

Resource 1-lane(E) 1-lane(G) 4-lane(E) 4-lane(G)

ALUTs 239 164 148K 146K

REGs 725 572 76628 77260

BRAM(bits) 186K 186K 449K 682K

DSPs 9 12 36 24

Cycles/Kernel 1746 1742 436 446

EWGT 190K 222K 763K 488K



Some Results
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Full-Program Transformation

• Type Transformations are not FPGA-specific

• Compiler can create variants for full program

• Then separate out parts of the program based on 
minimal cost on given components of the system

• For parallelisation over a cluster, use Multi-Party 
Session Types to transform the program into 
communicating processes



Conclusions

• FPGAs have reached maturity as HPC platforms

• High-Level Synthesis and Heterogeneous 
Programming are both very important steps forward, 
and performance is already impressive

• But we need to raise the abstraction level even more

• Full-system compilers for heterogeneous systems

• FPGAs are merely components in such systems

• Type Transformations are one possible way



Thank you!


