Umver51ty
of Glasgow

FPGAs as Components in
Heterogeneous HPC Systems:
Raising the Abstraction Level of
Heterogeneous Programming

Wim Vanderbauwhede
School of Computing Science
University of Glasgow

A trip down memory lane
RN

80 Years ago:
The Theory

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurixG.

Turing, Alan Mathison. "On computable numbers, with an application to the Entscheidungsproblem." J. of Math 58, no. 345-363 (1936): 5.

1936: Universal machine (Alan Turing)

1936: Lambda calculus (Alonzo Church)
1936: Stored-program concept (Konrad Zuse)
1937: Church-Turing thesis

1945: The Von Neumann architecture

POSTULATES FOR THE FOUNDATION OF LOGIC. 353

AX[M] represents a function, whose value for a value L of the independent

variable is equal to the result S{ M| of substituting L for x throughout M,
whenever S{ M| turns out to have a meaning, and whose value is in any
other case undefined.

Church, Alonzo. "A set of postulates for the foundation of logic." Annals of mathematics (1932): 346-366.

60-40 Years ago:
The Foundations

a
¥
N R P e LS
3 R . - AR /:1‘5

1957:
1958:
1965:
1971
1972:
1977:
1977

Fortran, John Backus, IBM

First IC, Jack Kilby, Texas Instruments
Moore’s law

First microprocessor, Texas Instruments
C, Dennis Ritchie, Bell Labs

Fortran-/7/

von Neumann bottleneck, John Backus

30 Years ago
HDLs and FPGAs

i dadga dseescts

4

s

4

J
et
et
-
4
<
e
|
-
-

1N

277771
Algotronix CAL1024 FPGA, 1989. © Algotronix

1984: Verilog

1984: First reprogrammable logic device, Altera
1985: First FPGA,Xilinx

1987: VHDL Standard IEEE 1076-1987

1989: Algotronix CAL1024, the first FPGA to
offer random access to its control memory

20 Years ago:
High-level Synthesis

Closing the Gap betwe_én Hardware and Software:
Hardware-software cosynthesis at Oxford
Ian Page.

IEE Colloquium

Hardware-software cosynthesis for reconfigurable systems
February 22, 1995.

Page, lan. "Closing the gap between hardware and software: hardware-software cosynthesis at Oxford." (1996): 2-2.

1996:
2001:
2003:
2003:
2003:
2004

Handel-C, Oxford University

Mitrion-C, Mitrionics

Bluespec, MIT

MaxJ, Maxeler Technologies

Impulse-C, Impulse Acce

Catapult C, Mentor Grap

erated Technologies

NICS

2005: SystemVerilog, BSV

2006: AutoPilot, AutoESL (Vivado)
2007: DIME-C, Nallatech

2011: LegUp, University of Toronto
2014: Catapult, Microsoft

10 Years ago:
Heterogeneous
Computing

2007: CUDA, NVIDIA

2009: OpenCL ,Apple Inc., Khronos Group
2010: Intel Many Integrated Cores

2011: Altera OpenCL

2015: Xilinx OpenCL

FPGA programming evolution

20000

18000

Heterogeneous
16000 Computing, OpenCL

14000 /”

C-to-Gates /VJ
12000 A

v YA

3

“ "\ V/

Verilog Handel-C
*% " VHDL /J
4000 First FPGAs M
2000 —_/,w.’/\v*/

O DO N DD DD DN
FLELP L LSS S
W PRI

Dow Jones index, 1985-2015

Where to next?

High-Level Synthesis

* For many years, Verilog/VHDL were good enough
* Then the complexity gap created the need for HLS.
* This reflects the rationale behind VHDL:

"A language with a wide range of descriptive capability that
was independent of technology or design methodology."

* What is lacking in this requirement is "capability for
scalable abstraction”.

“C to Gates”

* "C-to-Gates" offered that higher abstraction level

* But it was in a way a return to the days before
standardised VHDL/Verilog:

the various components making up a system were
designed and verified using a wide range of
different and incompatible languages and tools.

The Choice of C

e C was designed by Ritchie for the specific
purpose of writing the UNIX operating system.
* j.e. to create a control system for a RAM-
based single-threaded system.
* It is basically a syntactic layer over assembly
language.
* Very different semantics from HDLs
* But it became the lingua franca for engineers,
and hence the de-facto language for HLS tools.

Really C?

* None of them was ever really C though:
* "C/C++ with restrictions and pragmas” (e.g. DIME-C, Vivado)
 “C with restrictions and a CSP API” (e.g. Impulse-C)

 "C-syntax language with parallel and CSP semantics”
(e.g. Handel-C, MaxJ)

* Typically, no recursion, function pointers (no stack) and
dynamic allocation (no OS)

* Until George came along ...

Heterogeneous
Computing

GPUs, Manycores and FPGAs

* Accelerators attached to host systems have
become increasingly popular

* Mainly GPUs,
e But increasingly manycores (MIC, Tilera)
* And FPGAs

FPGA Size Evolution Since 2003

Virtex Ultrascale+ (16nm),
Stratix 10 (14nm)

Virtex-7, Stratix-V (28nm)

Virtex-6, Stratix-IV (40nm)

Virtex-5, Stratix-lll (65nm)

Virtex-4, Stratix-1l (90nm)

Cells, Virtex

Virtex-Il, Stratix-GX (130nm) w Logic|Cells, Stratix

1 10 100 1000 10000

. ‘.‘ N

"On the Capability and Achievable
Performance of FPGASs for HP

Applications”

Wim Vanderbauwhede |
School of Computing Science, University of Glasgow, UK

http://www.slideshare.net/WimVanderbauwhede

Heterogeneous Programming

e State of affairs today:

* Programmer must decide what to offload

e Write host-accelerator control and data movement code
using dedicated API

* Write accelerator code using dedicated language

e Many approaches (CUDA, OpenCL, MaxJ, C++ AMP)

Programming Model

* All solutions assume data parallelism:

* Each kernel is single-threaded, works on a portion of the
data

* Programmer must identify these portions and the amount
of parallelism

e So not ideal for FPGAs

* Recent OpenCL specifications have kernel pipes allowing
construction of pipelines

* Also support for unified memory space

Performance

OpenCL-FPGA Speed-up vs OpenCL-CPU

Speed-up
w

0

Nearest neighbour Lava MD Document Classification

Kernel Speed 5.345454545 4.317035156 1.306521951

Total Speed 1.603603604 4.232313328 1.037712032

Segal, Oren, Nasibeh Nasiri, Martin Margala, and Wim Vanderbauwhede. "High level programming of FPGAs for HPC and data centric applications.” Proc. IEEE HPEC 2014, pp. 1-3.

Power Savings

CPU/FPGA Power Consumption Ratio

Power Saving
w

0
Nearest neighbour Lava MD Document Classification

Kernel Power 5.241358852 4.,232966577 1.281079155

Total Power 1.572375533 4.149894595 1.017503956

Segal, Oren, Nasibeh Nasiri, Martin Margala, and Wim Vanderbauwhede. "High level programming of FPGAs for HPC and data centric applications.” Proc. IEEE HPEC 2014, pp. 1-3.

FPGASs as
Components In
Heterogeneous

Systems

Heterogeneous HPC Systems

* Modern HPC cluster node:

* Multicore/manycore host

* Accelerators: GPGPU, MIC and increasingly, FPGAs
* HPC workloads

* Very complex codebase

* Legacy code

Example: WRF

* Weather Research and Forecasting Model
* Fortran-90, support for MPI and OpenMP
* 1,263,320 lines of code

* So about ten thousand pages of code listings

* Parts of it have been accelerated manually on GPU (a few
thousands of lines)

* Changing the code for a GPU/FPGA system would be a huge
task, and the result would not be portable.

FPGASs in HPC

* FPGAs are good at some tasks, e.g.:
* Bit level, integer and string operations
* Pipeline parallelism rather than data parallelism
 Superior internal memory bandwidth

» Streaming dataflow computations
* But not so good at others

* Double-precision floating point computations

* Random memory access computations

Raising the
Abstraction
Level

One Codebase, Many Components

* For complex HPC applications, FPGAs will never be
optimal for the whole codebase

e But neither will multicores or GPUs

* So we need to be able to split the codebase
automatically over the different components in the
heterogeneous system.

* Therefore, we need to raise the abstraction level
beyond “heterogeneous programming” and “high-
level synthesis”

Today’s
high-level language
is tomorrow’s
compiler target

* Device-specific high-level abstraction is no
longer good enough

* OpenCL is relatively high-level and device-
independent, but it is still not good enough

* High-level synthesis languages and
heterogeneous programming frameworks
should be compilation targets!

* Just like assembly /IR languages and HDLs

Automatic Program
Transformations and
Cost models

e Starting from a complete, unoptimised program
 Compiler-based program transformations
* Correct-by-construction

 Component-based, hierarchical cost model for
the full system

* Optimization problem:

find the optimal program variant given the
system cost model

A Functional-Programming Approach

* For the particular case of scientific HPC codes
* Focus on array computations

* Express the program using higher-order
functions

* Type Transformation based program
transformation

Functional Programming

* There are only functions
* Functions can operate on functions
e Functions can return functions

 Syntactic sugar over the A—calculus

Types in Functional Programming

* Types are just labels to help us reason about
the values in a computation

* More general than typesine.gC

* For our purpose, we focus on types of
functions that perform array operations

* Functions are values, so they need a type

Examples of Types

-- a function f taking a vector of n values of type a and
returing a vector of m values of type b

f:Vecan->Vecbm

-- a function map taking a function from a to b and a
vector of type a, and returning a vector of type b

map :(a->b)->Vecan->Vecbn

Type Transformations

* Transform the type of a function into another
type

* The function transformation can be derived
automatically from the type transformation

* The type transformations are provably correct

* Thus the transformed program is correct by
construction!

Array Type Transformations

* For this talk, focus on
* \Vector (array) types
 FPGA cost model

* Programs must be composed using particular
higher-order functions (correctness conditions)

* Transformations essentially reshape the arrays

Higher-order Functions

* map: perform a computation on all elements of an
array independently, e.g. square all values.

* can be done sequentially, in parallel or using a
pipeline if the computation is pipelined

e foldl: reduce an array to a value using an
accumulator, e.g. sum all values.

e can be done sequentially or, if the computation is
associative, using a binary tree

Example: SOR

 Successive Over-Relaxation (SOR) kernel from a
Large-Eddy simulator (weather simulation) in Fortran:

do 1=1,nmaxp ; do k=1,km ; do j=1,jm ; do i=1,im
reltmp = omega*(cnl(i,j,k)* (cn2l(i)*p(i+l,j,k)+cn2s(i)*p(i-1,j,k) &
+cn3l(j)*p(i,j+1l,k)+cn3s(j)*p(i,j-1,k) &
) &

+cndl(k)*p(i,j,ktl)+cnds(k)*p(i,],k-1
—rhs(i,j,k))-p(i,3,k))
p(i,Jj,k) = p(i,j,k) + reltmp
sor _err = sor_err + reltmp*reltmp
end do ; end do ; end do ; end do

Example: SOR using map

* Fortran code rewritten as a map of a function over a
1-D vector

pps = prepare vectors p rhs cnl cn2l ...

ps = map p_SOr pps
p sor pt = reltmp + p ¢

where
(p.ipl,...,p c,rhs c) = pt
reltmp = omega * (cnl * (
cn2l x *# p i pl + cn2s x * p i ml
+ cn3l x * p j pl + cn3s x * p j ml
+ cn4l x * p k pl + cnds x * p kml) — rhs ¢c) - p ¢

Example: Type Transformation

* Transform the 1-D vector into a 2-D vector
* The program transformation is derived

pps : Vect (im*jm*km) t —— 1D vector
ppst : Vect km (Vect im*jm t) —— transformed 2D vector

—— Resulting in a corresponding change in the program:

ps = map p_SoOr pps —— original program

= reshapeTo km pps —— reshaping data
pst = map (map p sor) ppst —— new program

FPGA Cost Modeling
* Based on an overlay architecture

Compute
Device
(FPGA)

Kernel Iteration
Local Memories Control
(On-chip Block

RAM) Block Memory

Transfer Control

Local Memory
Interconnect

Stream

PCle Control I]I]I]

Core Core_Compute

[COlEE)CeD

Global Memory Stream
Controller Control

Core Core_Compute

Global Memory Stream

|2 el
Core Core_Compute

Compute Unit

Cost Calculation

* Uses an Intermediate Representation Language, the
TyTra-IR

* TyTra-IR uses LLVM syntax but can express
sequential, parallel and pipeline semantics

* Thus a direct mapping to the higher-order functions

e But the cost of computations and communication
can be computed directly from the TyTra-IR program

* No need for synthesis

TyTra-IR Example

w5 o s e (COMPTUTIE— TR 20
@main.p0 = addrSpace(12) uils,
!"istream", !"CONT", !0, !"strobj p"
@main.pl =
@main.p2 =
@main.p3 = ...
;...[other inputs]...
define void @f0(...args...) pipe {...}
define void @fl (...args...) par {
call @f0(...args...) pipe
call @f0(...args...) pipe
call @f0(...args...) pipe
call @f0(...args...) pipe }
define void (@main () {
call @fl(..args...) par }

1
2
3
-
5
6
7
8
9

Cost Space and Cost Estimation

3

VT Parse:
M y Ir: - Memory objects
anage- - Stream objects

Resource
Estimator for
Memories and
Streams

Accumulate:
Resource Estimates
of Memories and Streams

Recursively Parse Functions:

TvT - SSA compute instructions
C ty [FE: - Child function call instructions
ompute- - Local offset streams

- Local counters

Resource Recursively Accumulate:
Estimator for Resource Estimates of
instructions, instructions, child functions
offset streams, and locals for each function
and counters for each function

Analyze:
Parsed IR and determine
configuration

Throughput Estimate:
Estimator Throughput based on
Model configuration type

Cost Model Accuracy

Resource 1-lane(E) | 1-lane(G) | 4-lane(E) 4-lane(G)
ALUTs 239 164 148K 146K
REGs 725 572 76628 77260
BRAM(bits) 186K 186K 449K 682K
DSPs 9 12 36 24
Cycles/Kernel 1746 1742 436 446
EWGT 190K 222K 763K 488K

Runtime (normalised)

O B N W & U1 OO N o0 ©

Some Results

= CPU

® FPGA-MaxJ

™ FPGA-TyTra

96 144

im,jm,km

192

Full-Program Transformation

* Type Transformations are not FPGA-specific
* Compiler can create variants for full program

* Then separate out parts of the program based on
minimal cost on given components of the system

* For parallelisation over a cluster, use Multi-Party
Session Types to transform the program into
communicating processes

Conclusions

* FPGAs have reached maturity as HPC platforms

* High-Level Synthesis and Heterogeneous
Programming are both very important steps forward,
and performance is already impressive

* But we need to raise the abstraction level even more
* Full-system compilers for heterogeneous systems

* FPGAs are merely components in such systems
* Type Transformations are one possible way

Thank you!

