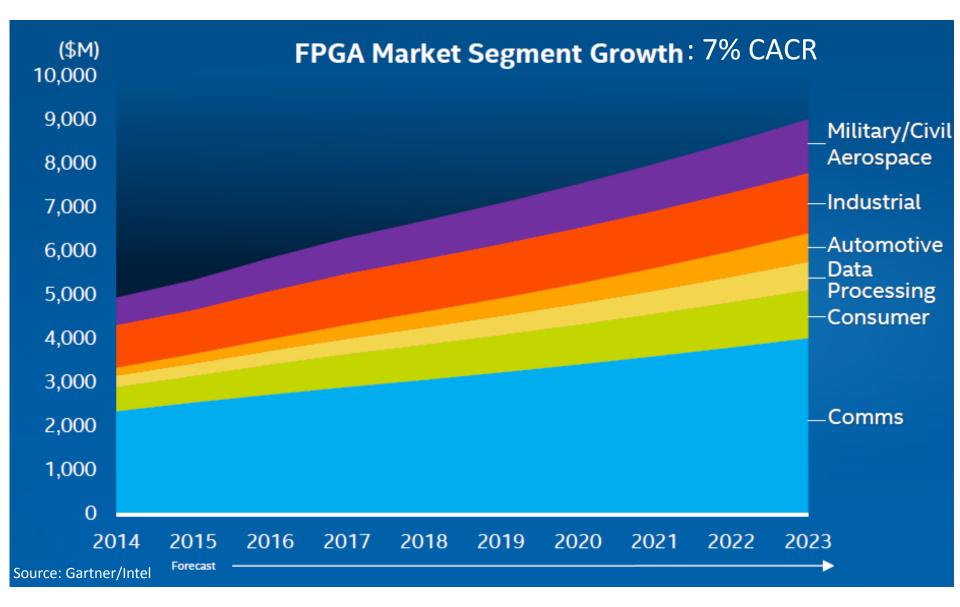
FRESH ideas

Wayne Luk Imperial College London

FRESH 11 July 2016 Event Sponsor: Maxeler Technologies

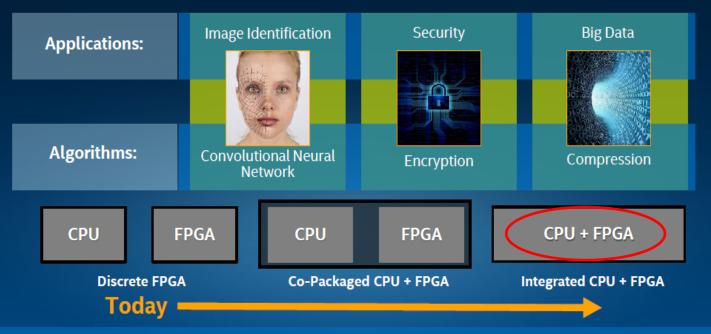

1

Why FRESH?

- most conferences
 - major: past achievements
 - minor: future work
- FRESH
 - minor: past achievements
 - major: future work
- why now?
- 2 FRESH: the Future of REconfigurable Systems and their High-level design

Time for FRESH ideas!

- it has been a while
 - Estrin 1960
 - 2015: 25 years of FPL
 - 2017: 25 years of FPGA/FCCM
 - 2016: 30 years of ASAP
- recent industrial developments
 - JP Morgan, CME, Juniper... adopted Maxeler systems
 - Microsoft adopted FPGAs in datacentres
 - Intel bought Altera



Strategic Combination Creates Significant Value

Product Synergies	 Addresses emerging customer workloads in the ~\$37B data center logic market segment New IoT products expected to expand serviceable market by ~\$11B Expected to be ~60% of total value created
Cost & Manufacturing Synergies	 OpEx reductions which increase over time Manufacturing leadership which is expected to improve existing Altera product portfolio and market segment share Expected to be ~40% of total value created

Expected to be Accretive to Non-GAAP EPS & Free Cash Flow in the First Year After Close

Cloud Example: Data Center FPGA Acceleration Up to 1/3 of Cloud Service Provider Nodes to Use FPGAs by 2020

>2X performance increase through integration

Reduces total cost of ownership (TCO) by using standard server infrastructure Increases flexibility by allowing for rapid implementation of customer IP and algorithms

Industrial Automation Control Pre-Programmed (ASSP replacement)

Processor, mem controller, security, standard IO

Industrial Specific Real-time control and acceleration

One Silicon Design

Base IA Complex

FPGA

Integrated die and multi-chip packages

Advanced Driver Assistance Systems Customer Defined IP (ASIC replacement)

Processor, mem controller, security, standard IO

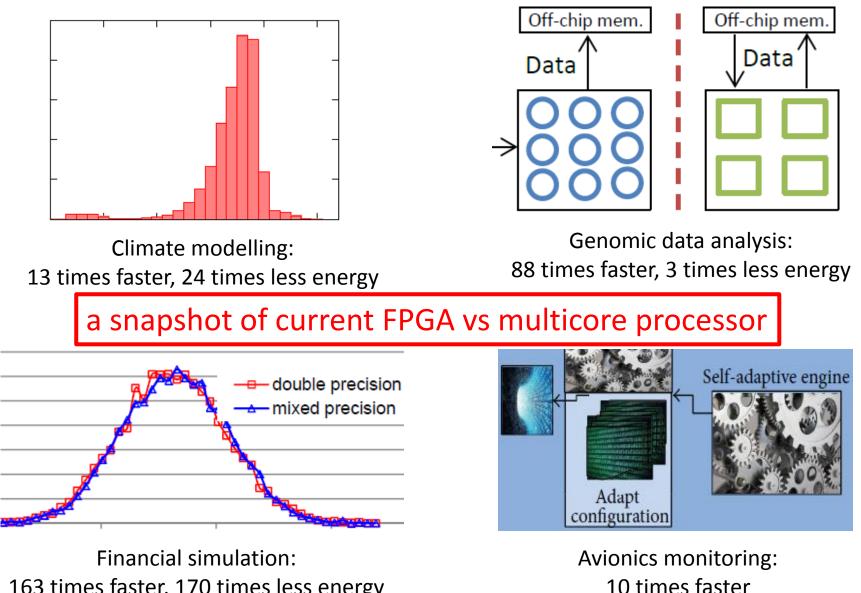
Automotive Specific Functional Safety, Computer Vision, Proprietary Acceleration

IoT Application Examples

- Integrated solutions accelerate growth in key IoT segments by adding new functionality, improving performance, and lowering cost
- ~\$11B incremental SAM by 2020 as integrated FPGAs become cost competitive with ASICs & ASSPs
- Customers can program their own IP, replacing ASICs
- Intel can pre-program industry-specific IP, replacing ASSPs
- Expected to reduce time-to-market by more than 50%

Why fundamental?

• conventional computing: fit program to processor

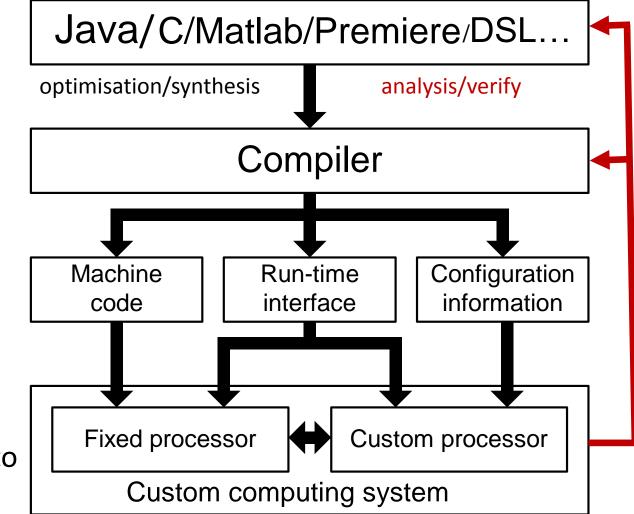


reconfigurable/custom computing: fit processor to program

reconfigurable fabric: heterogeneous programmable resources

Reconfigurable acceleration: examples

163 times faster, 170 times less energy


Vision: customise synthesis + analysis

application description

partition, compile, analysis, verify

system-specific programming interface

system-specific adaptation: clouds to devices

Future: short term

- accelerators for cloud computing
 - virtualisation + elastic resource model + event-triggering
 POETS project
- automate compilation and run-time reconfiguration
 - mixed precision + type/aspect-driven + exa-scale systems
 TYTRA project
 EXTRA project
- reconfigurable fabric: memory + Sys/Net-OC architecture
 - optimised: dynamic data access, heterogeneous resources...
- machine learning and reconfigurable design
 - reconfigurable design accelerates machine learning + vice versa
- self-adaptive design and auto-tuning
 - functional/temporal/statistical assertions, on-line optimisation

Future: long term

- fundamental, timeless principles
 - models: fabric + systems
 - mapping from high-level: correct + efficient
 - automation: specialisation + generalisation
 - limits: how far away from ideal
- understanding trade-offs

overlay

- automation: quality <u>vs</u> tool runtime/resources/user guide privacy, resilience
- speed <u>vs</u> resources <u>vs</u> energy <u>vs</u> accuracy <u>vs</u> security...
- optimisation: compile-time vs run-time
- technologies: silicon vs molecular vs quantum vs optic...
- grand challenges for the next industrial revolution?

FRESH: why here

- most UK research teams on reconfigurable systems
 - industry: Maxeler
 - rest of the world: Toronto
 - audience: Europe + Asia
- research areas
 - cover most areas
 - complementary
 - mutual respect
- opportunity and challenge: cross fertilisation
 - what can we do together?
 - what can we share?

Discussions

- how to accelerate advances in
 - reconfigurable systems
 - related technologies
- how to promote sharing of resources for
 - research and teaching
 - hardware, software, application data...
- how to improve interactions between
 - universities
 - industry
 - funding agencies

Next

- The Future of Reconfigurable Systems: an Industrial Perspective
- Overlays: a Solution Paradigm for FPGA High-Level Design?
- Architecture Centric Overlays for Abstraction and Performance
- break
- New Vistas in High Level Synthesis
- FPGA Virtualization for Enabling General Purpose Reconfigurable Computing
- Reconfigurable Market-on-Chip
- * lunch

Next

- The Future of Reconfigurable Systems: an Industrial Perspective
- Overlays: a Solution Paradigm for FPGA High-Level Design?
- Architecture Centric Overlays for Abstraction and Performance
- New Vistas in High Level Synthesis
- FPGA Virtualization for Enabling General Purpose Reconfigurable Computing
- Reconfigurable Market-on-Chip
- Heterogeneous Dataflow for Heterogeneous MPSoC FPGA
- Communication as a first class design constraint for reconfigurable systems
- Computing to the Energy and Performance Limits in Heterogeneous CPU-FPGA Devices
- High-Level Programming of FPGAs using Type-Driven Program
 ¹⁶ Transformations and Cost-Modelling * Break; Discussion + Wrap-Up