
Customized and Reconfigurable FPGAs

until the Variation is Coming

Terrence Mak

tmak@ecs.soton.ac.uk

Department of Electronics and Computer Science

University of Southampton, UK

Content

• Previous work

• New challenge and motivation

• The Market-on-Chip architecture and
operations

• Potentials and discussions

Speed

Power

Reliability

Communication
Computation Throughput

Memory size

How to manage on-chip networks?

- Power
- Delay
- Thermal
- Reliability

Using networks to managemnt networks

How to Manage On-chip Networks?

• To manage networks, we can use networks

6

Delay Thermal Deadlock MTBF

Minimize
delays for
possible
paths

Minimize
temperature
subjected to
the core
performances

Detect
existence of
deadlock at
runtime

To maximize
the expected
MTBF

IEEE Trans.
Ind. Electronics
2011

ACM ECS 2014

DATE’11 2011

(Best paper award)

IEEE VLSI-SoC 2014

(Best paper award)

On-Chip Dynamic Programming Network

7

The Magic Behind the Scene

• Re-formulate the Bellman equation as energy
function

• Fabricated chip

T. Mak et al., IEEE TCAS-I, 2010Current-mode design

On-Chip Dynamic Programming Network for Optimization

• The Bellman optimality equation

• Dynamic programming network transformation

• On-chip dynamic programming network provides
an embedded and distributed resolution

On-Chip Dynamic Programming Network for Routing

Page 9

• Distributed
execution

• Tightly coupled
• Optimal

decision
making

Arbiter

North

West

East

South
North

West

East

South

Local Local

Switch

Routing table

DP Computational

Unit

Queue length

prediction

Router

Update

routing

table

Destination
Routing

direction

North

South

East

West

N
o

rt
h

S
o

u
th

E
a

s
t

W
e

s
t

On-Chip Dynamic Programming Network for Routing (II)

5% 29%

• SystemC cycle accurate
simulator

• Realizing different
routing models and
traffic benchmarks

[T. Mak, et al., IEEE T-IE, 2011]

10

Random
traffic

Butterfly
traffic

Content

• Previous work

• New challenge and motivation

• The Market-on-Chip architecture and
operations

• Potentials and discussions

New Challenge

• Number of applications are increasing rapidly
AND the VARIATION of cores in the
application is huge

– Mobile phone (from a phone to a multimedia
platform)

– Vehicle and airplane

– Security systems (banking or exhibition)

Traditional Runtime Task Mapping

Traditional Runtime Task Mapping

• Offline: Task mapping is fixed at compile-time

– Complex heuristics algorithm

– Not flexible

• Online: Task mapping is determined when tasks arrive

– Less scalability: Increased complexity with core count

– Sub-optimal: Simple heuristics thus solution is far less
optimal

– Not fair: when hardware resource is not enough,
some applications have to wait

– Less adaptive to vary according to applications

Motivations

• How to handle variations?

• We might need a bit of Heuristic

• Super-Adaptive?
• Quick and to avoid deadlock

• Scalability (from hundred to thousands)

– Number of components and applicaitons

– Variations

MARKET

Demand

Supply

Trading platform
Matching between Applications and Processing Units

Application

Memory

Sockets

GPU

Network-on-
chipμP

MPEG

Monitors Sensors JTAG
Ethernet

Application

Application

Application

Application

Application

Application

Application

Application

Application

Application

Content

• Previous work

• New challenge and motivation

• The Market-on-Chip architecture and
operations

• Potentials and discussions

Proposed: Market-on-Chip

• A market is to manage and control
– how to efficiently allocate hardware resources to

applications
– Define rules

• Supply (Sell): multiple hardware resources
– (Heterogeneous) cores, network bandwidth, memory

controller, cache, etc.

• Demand (Buy): each application is an agent, bidding
for the resources according to the resource
requirement
– Applications have different characteristics, i.e. require

different amounts of resources
– The requirement can vary with time

Market-on-Chip
Price and Waiting time

• Competing a resource based on Price

Task 1 and Task 2 bid some money for a core. When a task is running, the
money is consumed until the money is run out. Then the task is stalled to save
money and the core is switched to task 2. In the example, the CPU time of task 1
is 40%.

When task 3 arrives, the core receives more biddings. The price of the core
increases. The money is run out faster. The CPU time of tasks decrease to 20%.

Proposed: Market-on-Chip

• Hierarchical arrangement

– A centralized agent (government) determines the
prices based on resource demand

– Distributed decision making: each agent requests
for the resources and makes decisions in
distributed manner (more scalable)

More to Consider

• How to design the market to make it simple
and efficient

• Other constraints such as thermal design
power (TDP), reliability, throughput, etc.

• How to define the utility function of each
agent

Conclusion

• Variation keeps going up, we need to think
about how to handle it.

• Analogue of market – supply and demand

• Inside an FPGA – components and
applications

• Make use of Price (updated) for exchange and
Waiting time

END

Proposed: Market-on-Chip

