UNIVERSITY OF

Southampton

Customized and Reconfigurable FPGAs
until the Variation is Coming

Terrence Mak
tmak@ecs.soton.ac.uk
Department of Electronics and Computer Science
University of Southampton, UK



Content

* Previous work



Power

Throughput
Speed
size g Reliability

Computation

Communication
Memory




How to manage on-chip networks?

- Power

- Delay

- Thermal

- Reliability



'y

Using networks to managemnt networks




How to Manage On-chip Networks?

* To manage networks, we can use networks

On-Chip Dynamic Programming Network

Thermal Deadlock

Minimize Minimize Detect To maximize
delays for temperature existence of the expected
possible subjected to deadlock at MTBF

the core runtime
paths performances IEEE VLSI-SoC 2014
IEEE Trans. DATE'11 2011 (Best paper award)
Ind. Electronics ACM ECS 2014 (Best paper award)

2011



The Magic Behind the Scene

* Re-formulate the Bellman equation as energy
function

dvi(t) 1 (1
i 30 = 3w o G o]
e Fabricated chip o
'l :T_f"n—r—_r ! ’

en L

2 25 3 35 4 45
Timsa (g} " “}-1'

- = - - 1] 0.5 1 15 2 25 3 35 4 45 &
Timsa (g) 210

Current-mode design T. Mak et al., IEEE TCAS-1, 2010



On-Chip Dynamic Programming Network for Optimization

* The Bellman optimality equation

Vt(k)(’u) = énilll {Vt(kwl)(u) + Ci.j}
ucV '

* Dynamic programming network transformation

unit output function
unit !

j o ,r‘/--___-
k '> "
| L
D))

* On-chip dynamic programming network provides
an and distributed resolution

o 1 .
Sk(i,7) = —[Cikx+a(k,7)],Yk

Aik

9(i,) = min{Sk(i,5))




On-Chip Dynamic Programming Network for Routing

Tile/core Com:]mnicate.ﬁ DP computational * DIStrlbU ted
DP values, V(i) unit U execution
/ pdate .
* Tightly coupled
* Optimal
decision
making
Data-flow
L-"network ¢ Router
V4
__-Router 4 | T

: —» South
switch —— TN "

YYVvVvYYyy

ananan




Average packet delay (cycle)

On-Chip Dynamic Programming Network for Routing (Il)

Packet injection rate (Packet/cycle/nodex 10™?)

: Traffics XY DyAD Odd-Even  NoP DP
’O S c | Random-1 5.06 5.05 492 524 545
ystemC cycle accurate  p.nqom-2 3.07  3.12 4.52 454 508
simulator Transpose 10.8 11.1 13.0 14.7 17.3
e Realizine different Butterfly | 201 20.9 21.0 211 292
'2Ing DP 289% ) 275%  18.4% (143%)
routing models and Improvement
1o traffic benchmarks | | | |
-8 —XY : " ,! —8-XY T
~ 4 -NoP - / ::;::E}}EAD
250 _t_g)éAD """""" / """"""""""""" 5% """ | — & — NOP
—e—[)p i —e—DP

200

150 f - v

100

(571 1| PP /} e TR ........... .............. ..............

Average packet delay (cycle)

S.EH 0.015 0.02 0.025 0.03 0.035

Packet injection rate (packet/cycle/node)

[T. Mak, et al., IEEE T-IE, 2011]



Content

* New challenge and motivation



New Challenge

* Number of applications are increasing rapidly
AND the VARIATION of cores in the
application is huge
— Mobile phone (from a phone to a multimedia

platform)
— Vehicle and airplane

— Security systems (banking or exhibition)



Traditional Runtime Task Mapping

Applications

Task Mapping or
resource allocation

Hardware Resources:
(1) Cores
(2) Network bandwidth
(3) Memory controller
(4) Cache

NoC-based Many-core system




Traditional Runtime Task Mapping

* Offline: Task mapping is fixed at compile-time
— Complex heuristics algorithm
— Not flexible
* Online: Task mapping is determined when tasks arrive

— Less scalability: Increased complexity with core count

— Sub-optimal: Simple heuristics thus solution is far less
optimal

— Not fair: when hardware resource is not enough,
some applications have to wait

— Less adaptive to vary according to applications



Motivations

* How to handle variations?

» We might need a bit of Heuristic

* Super-Adaptive?

 Quick and to avoid deadlock

e Scalability (from hundred to thousands)
— Number of components and applicaitons
— Variations






-

Demand

E




\
N Memory . ) )
~_ [ ™onitprs l [ Sensors ] [ Ethernet | TAG-F-7
o= —— S === =
Trading platform
Matching between Applications and Processing Units
(Y- . e
. - - Appllcatlon Application A;)Iﬁtf(m\ -
7’ . . L \ Application
’ prphcatlon ] Application (Application
( k \ Application
\ < Application

— e e o e e e -
—-
—
—
-—
—

~

—
—
_—aw

Application J

-
-
Ly s =

Application o
s

-—



Content

ne Market-on-Chip architecture and

nerations



Proposed: Market-on-Chip

« A market is to manage and control

— how to efficiently allocate hardware resources to
applications

— Define rules

* Supply (Sell): multiple hardware resources

— (Heterogeneous) cores, network bandwidth, memory
controller, cache, etc.

e Demand (Buy): each application is an agent, bidding
for the resources according to the resource
requirement

— Applications have different characteristics, i.e. require
different amounts of resources

— The requirement can vary with time



Market-on-Chip
Price and Waiting time

 Competing a resource based on Price

A core with competitions from
tasks from multiple applications

v

3 tasks | M cou Price "
CPU time of
T1and T2 N\

Task 1 and Task 2 bid some money for a core. When a task is running, the
money is consumed until the money is run out. Then the task is stalled to save
money and the core is switched to task 2. In the example, the CPU time of task 1
is 40%.

When task 3 arrives, the core receives more biddings. The price of the core
increases. The money is run out faster. The CPU time of tasks decrease to 20%.



Proposed: Market-on-Chip

* Hierarchical arrangement

— A centralized agent (government) determines the
prices based on resource demand

— Distributed decision making: each agent requests
for the resources and makes decisions in
distributed manner (more scalable)



More to Consider

* How to desigh the market to make it simple
and efficient

e Other constraints such as thermal design
power (TDP), reliability, throughput, etc.

* How to define the utility function of each
agent



Conclusion

Variation keeps going up, we need to think
about how to handle it.

Analogue of market — supply and demand

Inside an FPGA — components and
applications

Make use of Price (updated) for exchange and
Waiting time



END



Proposed: Market-on-Chip

Applications

Market on Chip:
Market mechanism for resource allocation

Hardware Resources:

(1) Cores

(2) Network bandwidth
(3) Memory controller

(4) Cache

NoC-based Many-core system



