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Reconfigurable	Systems	on	the	Rise	
•  FPGAs	are	increasingly	integrated	in	compuCng	systems	

–  Massive	parallelism	can	lead	to	high	performance	
–  Lower	power	
–  Customizability	

•  Newer	generaCon	of	high-performance	systems	integrate	
FPGAs	with	mulCcores,	targeCng	data	centers	
–  Example	systems	from	Intel,	IBM	and	Xilinx	
–  Used	mainly	by	soOware	developers	
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FPGA	Programmability	Burdens	
•  FPGAs	are	programmed	using	a	hardware	design	abstracCon,	

which	is	foreign	to	the	bulk	of	soOware	developers	
–  HDL,	Timing,	fiYng,	seed	sweeps,	etc.	

•  FPGA	development	tools	lead	to	extremely	long	development	
cycles	compared	to	their	soOware	counterparts	
–  A	large	circuit	can	take	days	to	compile	(synthesis,	place,	route,	Cme,	

etc.)	and	may	need	several	compiles	

•  There	is	a	pressing	need	to	alleviate	these	burdens	and	make	
FPGA	design	accessible	to	soOware	developers	
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Tackling	the	Burden	
•  High-Level	Synthesis	(HLS)		

–  Generated	hardware	increasingly	compeCCve	with	HDL	design	

•  High-level	programming	models	
–  Dataflow	model	from	Maxeler	

•  Nonetheless:	
–  Developer	remains	exposed	to	various	aspects	of	hardware	design	
–  Use	of	FPGA	design	tools	is	sCll	required!	⇒	long	development	cycles	
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Overlays	
•  Pre-compiled	FPGA	circuits	that	are	in	themselves	

configurable/programmable,	i.e.,	run-Cme	configurable	
–  Examples:	soO	processors,	GPU-on-FPGA,	mesh-of-FUs,	etc.	
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FPGA	vs.	Overlay	Design	Flows	
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Mesh-of-FUs	Overlays	[FPL	2013]	
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Mapping	DFGs	to	Overlay	–	Place	
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Mesh-of-FUs	Tools	
•  ApplicaCon-to-overlay	tool	chain	that:	

–  Extracts	DFG	of	bodies	of	parallel	loops	in	C	code	

–  Places	and	routes	the	DFG	nodes	onto	the	overlay		
•  Configures	the	switches	to	establish	DFG	connecCvity	
•  Generates	the	configuraCon	stream	of	the	overlay	
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High	Performance	with	no	Hardware	Design	
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DFG	 Size	(nodes)	 GFLOPS	 Compile	
Time	(sec)	

n-Body	 125	 18.72	 0.44	
BlackSholes	 131	 21.22	 1.33	
MatMul	 96	 19.66	 1.05	
MatMulAdd	 114	 22.46	 3.80	

•  Example	mesh-of-FUs	overlay	on	a	StraCx	IV	[FPL	2013]	
–  Single	precision	floaCng	point	operaCons	
–  288	cells	implemented	as	an	18x16	mesh	
–  fMAX	of	312	MHz	and	32.4	GFLOPS	peak		(integer	at	415	MHz)	

•  Others	also	report	high	performance	results	

GFLOPS	 Compile	
Time	(sec)	

21.52	 2724	
22.10	 2508	
25.21	 2045	
28.79	 919	

HDL	Overlay	



SoFware-Friendly	Target		
•  Overlays	raise	the	level	of	abstracCon	of	using	FPGAs	to	one	

that	is	more	familiar	to	soOware	designers	
–  C	programming	for	a	soO	processor	
–  CUDA/OpenCL	for	GPU	overlays	
–  Data	flow	graphs	for	mesh-of-FUs	

•  This	opens	up	opportuniCes	for	“standard”	soOware	tools	to	
target	FPGAs	
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JIT	Compila-on	to	Hardware	

•  Profile	code	
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JIT	Compila-on	to	Hardware	

•  IdenCfy	hot	segments	of	code		
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16-07-11	 17	

	:	
	ADD	 	R9,R7,R10	
	BEQZ 	end	

L1: 	ADD	 	R1,R3,R7	
	MULT 	R11,R12,R13	
	ADD 	R8,R1,R11	
	SUB 	R9,R8,#8	
	SLT		 	R8,R9,R7	
	BNZ		 	R8,L1	
	ADD			 	R7,R6,R1	
	:	

ADD	

MULT	 ADD	

SLT	 SUB	

FPGA	
Overlay	

CPU	

ADD	

MULT	 ADD	

SLT	 SUB	



JIT	Compila-on	to	Hardware	

•  Re-write	the	code	
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JIT	Compila-on	to	Hardware	

•  Transfer	execuCon	to	the	overlay	
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A	Prototype	JIT	Compiler	
•  Target:	Intel	QuickAssist	Plamorm	
	
	
	
	
•  The	compiler	prototype:		

–  Built	around	LLVM,	targets	innermost	loops	of	scienCfic	code	
–  MiCgates	much	of	the	run-Cme	overhead	to	compile	Cme	

•  Overlay	currently	being	integrated	into	the	target	plamorm	
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Accelera-on	Poten-al	
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Customizability	
•  One	of	the	key	advantages	of	FPGAs	is	that	they	can	be	

customized	for	applicaCons	

•  Overlays	can	also	be	“user”	customizable	
–  With	minimal	usage	of	FPGA	design	tools	

•  In	the	context	of	our	mesh-of-FUs,	we	can	vary	the	choice	of	
the	FU	at	each	locaCon	of	the	mesh,	i.e.,	the	funcConal	
layout,	to	the	overlay	more	efficient	for	an	applicaCon	
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A	Library-Based	Approach	
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Program	Analysis	for	Customiza-on	
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System	Integra-on	

•  Must	be	able	to	virtualize	the	FPGA	
–  Take	snapshots	
–  Migrate	
–  Share	and	manage	as	a	resource	
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Overlays	Facilitate	Virtualiza-on	
•  FPGA	virtualizaCon	only	now	being	explored	

–  Requires	specialized	hardware	
–  A	very	large	“state”	

•  Overlays	naturally	have	a	much	smaller	state,	facilitaCng	
snapshots	and	context	switching	

–  We	would	like	to	explore	this	support	in	our	mesh-of-FUs	overlay	
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Challenges	to	Overlays	
	

•  Resource	overhead	
–  That	is,	the	FPGA	resources	used	by	the	overlay	compared	to	a	

dedicated	circuit	(HDL)	that	implements	the	same	applicaCon	
–  ~4X	for	our	FP	overlay	and	can	be	higher	
–  Difficult	to	quanCfy	design	effort	

–  FPGAs	are	are		increasing	in	size		
–  Hard	floaCng	point	units	
–  Hardening	the	overlay	once	design	is	over?	
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Challenges	to	Overlays	–	Cont’d	
•  Overlay	architectures	need	more	exploraCon:	which	

architecture	for	a	given	applicaCon	domain	
–  How	to	ensure	scalability?	
–  Taking	into	account	the	underlying	FPGA	device	constraints		
–  How	to	implement	well	(e.g.,	data-driven	execuCon,	FIFOs,	etc.)?		
–  Fixed	funcCon	vs.	mulC-funcCon	FUs?	
–  How	to	reducing	resource	overhead?	
–  Time	mulCplexed?	
–  MulCple	devices?	
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Challenges	to	Overlays	–	Cont’d	
•  Evolving	the	FPGA	design	tools	

–  Modular	architectures	do	not	lead	to	modular	circuits	
•  The	tools	do	not	understand	the	modularity	
•  At	present	we	must	“fight	with	them”	[FPL	2014]	

–  The	tools	must	evolve	to	allow	developers	to	express	and	to	recognize	
the	modularity	of	the	architecture	
•  Scalable	circuits	from	scalable	architectures	
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Concluding	Remarks	
•  A	case	for	overlays	

–  Performance,		soOware-friendliness,	customizability	and	system	
integraCon	

•  They	can	serve	as	“middle	ground”	between	hardware	design	
and	soOware	programming	
–  Either	for	producCon	or	for	debugging	and	prototyping	

•  Challenges	to	architecture,	programming	models,	
implementaCon	and	resource	overhead	
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Ques-ons?	
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