
Overlays:	a	solu-on	paradigm		
for	FPGA	high-level	design?	

Tarek	S.	Abdelrahman	
	

The	Edward	S.	Rogers	Department	of		
Electrical	and	Computer	Engineering	

University	of	Toronto	
	

tsa@ece.utoronto.ca	



Reconfigurable	Systems	on	the	Rise	
•  FPGAs	are	increasingly	integrated	in	compuCng	systems	

–  Massive	parallelism	can	lead	to	high	performance	
–  Lower	power	
–  Customizability	

•  Newer	generaCon	of	high-performance	systems	integrate	
FPGAs	with	mulCcores,	targeCng	data	centers	
–  Example	systems	from	Intel,	IBM	and	Xilinx	
–  Used	mainly	by	soOware	developers	

16-07-11	 2	



Reconfigurable	Systems	on	the	Rise	
•  FPGAs	are	increasingly	integrated	in	compuCng	systems	

–  Massive	parallelism	can	lead	to	high	performance	
–  Lower	power	
–  Customizability	

•  Newer	generaCon	of	high-performance	systems	integrate	
FPGAs	with	mulCcores,	targeCng	data	centers	
–  Example	systems	from	Intel,	IBM	and	Xilinx	
–  Used	mainly	by	soOware	developers	

16-07-11	 3	



FPGA	Programmability	Burdens	
•  FPGAs	are	programmed	using	a	hardware	design	abstracCon,	

which	is	foreign	to	the	bulk	of	soOware	developers	
–  HDL,	Timing,	fiYng,	seed	sweeps,	etc.	

•  FPGA	development	tools	lead	to	extremely	long	development	
cycles	compared	to	their	soOware	counterparts	
–  A	large	circuit	can	take	days	to	compile	(synthesis,	place,	route,	Cme,	

etc.)	and	may	need	several	compiles	

•  There	is	a	pressing	need	to	alleviate	these	burdens	and	make	
FPGA	design	accessible	to	soOware	developers	

16-07-11	 4	



Tackling	the	Burden	
•  High-Level	Synthesis	(HLS)		

–  Generated	hardware	increasingly	compeCCve	with	HDL	design	

•  High-level	programming	models	
–  Dataflow	model	from	Maxeler	

•  Nonetheless:	
–  Developer	remains	exposed	to	various	aspects	of	hardware	design	
–  Use	of	FPGA	design	tools	is	sCll	required!	⇒	long	development	cycles	

	
16-07-11	 5	



Overlays	
•  Pre-compiled	FPGA	circuits	that	are	in	themselves	

configurable/programmable,	i.e.,	run-Cme	configurable	
–  Examples:	soO	processors,	GPU-on-FPGA,	mesh-of-FUs,	etc.	

16-07-11	 6	

SoF		
Processor	

Source:	Andryc	et	al:	FlexGrip:	A	SoF	GPGPU		
for	FPGAs,	FPT	13			

PE	 PE	 PE	

PE	 PE	 PE	

PE	 PE	 PE	



FPGA	vs.	Overlay	Design	Flows	

16-07-11	 7	

Pre-compiled		
overlay	

FPGA	FPGA	

FPGA	Design		
Tools	

ConfiguraCon	
	Stream	FPGA		

bitstream	

Applica-on	(HDL)	

Applica-on-to-	
Overlay	Tools	

Applica-on	(C,	CUDA,	DFG,	etc.)	

seconds	

hours/days	

µseconds	

harder	 simpler	



Mesh-of-FUs	Overlays	[FPL	2013]	

16-07-11	 8	

ADD	 ADD	

EXP	 SHF	

ADD	 SUB	 SUB	

MUL	

DIV	

FuncCon	
Unit	

RouCng		
logic	

4-NN	connected	array	of	cells	

Data	Flow	Graph	

O1	

O2	

I1	 I2	 I3	 I4	 I5	 I6	

ADD	 SUB	 SUB	

MUL	

DIV	

C	

E	

D	

A	 B	



Mapping	DFGs	to	Overlay	–	Place	

16-07-11	 9	

ADD	 ADD	

EXP	 SHF	

ADD	 SUB	 SUB	

MUL	

DIV	

I1	

I2	

I3	 I4	 I5	

I6	

O1	 O2	

A	 B	 C	

D	

E	

Data	Flow	Graph	

O1	

O2	

I1	 I2	 I3	 I4	 I5	 I6	

ADD	 SUB	 SUB	

MUL	

DIV	

C	

E	

D	

A	 B	



16-07-11	 10	

ADD	 SUB	 SUB	

ADD	 MUL	 ADD	

DIV	 EXP	 SHF	

O1	

O2	

I1	 I2	 I3	 I4	 I5	 I6	

ADD	 SUB	 SUB	

MUL	

DIV	

C	

E	

D	

A	 B	

I1	

I2	

I3	 I4	 I5	

I6	

O1	 O2	

A	 B	 C	

D	

E	

pipeline		
register/	
FIFO	

Data	Flow	Graph	

Mapping	DFGs	to	Overlay	–	Route	



O1	

O2	

I1	 I2	 I3	 I4	 I5	 I6	

ADD	 SUB	 SUB	

MUL	

DIV	

C	

E	

D	

A	 B	

O1	

O2	

I1	 I2	 I3	 I4	 I5	 I6	

ADD	 SUB	 SUB	

MUL	

DIV	

C	

E	

D	

A	 B	

Pipelined	Execu-on	

16-07-11	 11	

ADD	 SUB	 SUB	

ADD	 MUL	 ADD	

DIV	 EXP	 SHF	

O1	

O2	

I1	 I2	 I3	 I4	 I5	 I6	

ADD	 SUB	 SUB	

MUL	

DIV	

C	

E	

D	

A	 B	

I1	

I2	

I3	 I4	 I5	

I6	

O1	 O2	

A	 B	 C	

D	

E	

pipeline		
register/	
FIFO	

Data	Flow	Graph	



Mesh-of-FUs	Tools	
•  ApplicaCon-to-overlay	tool	chain	that:	

–  Extracts	DFG	of	bodies	of	parallel	loops	in	C	code	

–  Places	and	routes	the	DFG	nodes	onto	the	overlay		
•  Configures	the	switches	to	establish	DFG	connecCvity	
•  Generates	the	configuraCon	stream	of	the	overlay	

16-07-11	 12	



High	Performance	with	no	Hardware	Design	

16-07-11	 13	

DFG	 Size	(nodes)	 GFLOPS	 Compile	
Time	(sec)	

n-Body	 125	 18.72	 0.44	
BlackSholes	 131	 21.22	 1.33	
MatMul	 96	 19.66	 1.05	
MatMulAdd	 114	 22.46	 3.80	

•  Example	mesh-of-FUs	overlay	on	a	StraCx	IV	[FPL	2013]	
–  Single	precision	floaCng	point	operaCons	
–  288	cells	implemented	as	an	18x16	mesh	
–  fMAX	of	312	MHz	and	32.4	GFLOPS	peak		(integer	at	415	MHz)	

•  Others	also	report	high	performance	results	

GFLOPS	 Compile	
Time	(sec)	

21.52	 2724	
22.10	 2508	
25.21	 2045	
28.79	 919	

HDL	Overlay	



SoFware-Friendly	Target		
•  Overlays	raise	the	level	of	abstracCon	of	using	FPGAs	to	one	

that	is	more	familiar	to	soOware	designers	
–  C	programming	for	a	soO	processor	
–  CUDA/OpenCL	for	GPU	overlays	
–  Data	flow	graphs	for	mesh-of-FUs	

•  This	opens	up	opportuniCes	for	“standard”	soOware	tools	to	
target	FPGAs	

16-07-11	 14	



JIT	Compila-on	to	Hardware	

•  Profile	code	

16-07-11	 15	

	:	
	ADD	 	R9,R7,R10	
	BEQZ 	end	

L1: 	ADD	 	R1,R3,R7	
	MULT 	R11,R12,R13	
	ADD 	R8,R1,R11	
	SUB 	R9,R8,#8	
	SLT		 	R8,R9,R7	
	BNZ		 	R8,L1	
	ADD			 	R7,R6,R1	
	:	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FPGA	
Overlay	

CPU	



JIT	Compila-on	to	Hardware	

•  IdenCfy	hot	segments	of	code		

16-07-11	 16	

	:	
	ADD	 	R9,R7,R10	
	BEQZ 	end	

L1: 	ADD	 	R1,R3,R7	
	MULT 	R11,R12,R13	
	ADD 	R8,R1,R11	
	SUB 	R9,R8,#8	
	SLT		 	R8,R9,R7	
	BNZ		 	R8,L1	
	ADD			 	R7,R6,R1	
	:	

FPGA	
Overlay	

CPU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	



FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

JIT	Compila-on	to	Hardware	

•  Extract	DFG	and	configure	the	overlay	

16-07-11	 17	

	:	
	ADD	 	R9,R7,R10	
	BEQZ 	end	

L1: 	ADD	 	R1,R3,R7	
	MULT 	R11,R12,R13	
	ADD 	R8,R1,R11	
	SUB 	R9,R8,#8	
	SLT		 	R8,R9,R7	
	BNZ		 	R8,L1	
	ADD			 	R7,R6,R1	
	:	

ADD	

MULT	 ADD	

SLT	 SUB	

FPGA	
Overlay	

CPU	

ADD	

MULT	 ADD	

SLT	 SUB	



JIT	Compila-on	to	Hardware	

•  Re-write	the	code	

16-07-11	 18	

	:	
	ADD	 	R9,R7,R10	
	BEQZ 	end	

L1: 			
			
			
			
			
			
	ADD			 	R7,R6,R1	
	:	

FPGA	
Overlay	

CPU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

ADD	

MULT	 ADD	

SLT	 SUB	

ADD	

MULT	 ADD	

SLT	 SUB	



JIT	Compila-on	to	Hardware	

•  Transfer	execuCon	to	the	overlay	

16-07-11	 19	

	:	
	ADD	 	R9,R7,R10	
	BEQZ 	end	

L1: 			
			
			
			
			
	 	ADD			
	R7,R6,R1	
	:	

FPGA	
Overlay	

CPU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

FU	 FU	 FU	

ADD	

MULT	 ADD	

SLT	 SUB	

ADD	

MULT	 ADD	

SLT	 SUB	

User-Transparent	Dynamic	Program	Accelera-on	



A	Prototype	JIT	Compiler	
•  Target:	Intel	QuickAssist	Plamorm	
	
	
	
	
•  The	compiler	prototype:		

–  Built	around	LLVM,	targets	innermost	loops	of	scienCfic	code	
–  MiCgates	much	of	the	run-Cme	overhead	to	compile	Cme	

•  Overlay	currently	being	integrated	into	the	target	plamorm	
16-07-11	 20	

CPU	 CPU	

System	Memory	

QPI	Coherent	Interconnect	

StraCx	FPGA	

QPI	IP	
AFU	

Xeon	MulCcore	Processor	

Figure	aOer	Intel	literature	



Accelera-on	Poten-al	

16-07-11	 21	

0	

1	

2	

3	

4	

5	

6	

7	

Sp
ee
du

p	
	

Aplplica-on	

FPGA	simulaCon	results	based	on		
measured	system	parameters		



Customizability	
•  One	of	the	key	advantages	of	FPGAs	is	that	they	can	be	

customized	for	applicaCons	

•  Overlays	can	also	be	“user”	customizable	
–  With	minimal	usage	of	FPGA	design	tools	

•  In	the	context	of	our	mesh-of-FUs,	we	can	vary	the	choice	of	
the	FU	at	each	locaCon	of	the	mesh,	i.e.,	the	funcConal	
layout,	to	the	overlay	more	efficient	for	an	applicaCon	

16-07-11	 22	



A	Library-Based	Approach	

16-07-11	 23	

A M D D

A M S	 S	

A M A M

A M A M

A M D D

A M S	 S	

A M A M

A M A M

Desired	Overlay	 Library	of	Pre-Placed	
and	Pre-routed	Overlays	 SCtched	Overlay	

M M

A AD D

S	 S	A M

A M

•  Bopom-Up	flow	allows	(restricted)	relocaCon	of	pre-placed	
and	pre-routed	groups	of	cells	[FPL	2014]	 sCtch	

•  Example	12x15	overlay:	35	minutes	vs.	15	hours		



D	 A	 S	 S	

A	

A	

A	

M

M

M

M

Program	Analysis	for	Customiza-on	

16-07-11	 24	

A	

M	 A	 M	

S	S	

M	

D	

A	

D	

M	A	
Program	
Analysis	

A	 M D	 D	

A	 M S	 S	

A	 M A	 M

A	 M A	 M

Candidate	Overlays	Program	DFG	
Work-to-be-done	



System	Integra-on	

•  Must	be	able	to	virtualize	the	FPGA	
–  Take	snapshots	
–  Migrate	
–  Share	and	manage	as	a	resource	

16-07-11	 25	

CPUs	 GPUs	 FPGAs	

VM	 VM	

CPUs	 GPUs	 FPGAs	

VM	 VM	

CPUs	 GPUs	 FPGAs	

VM	 VM	

Spark	 Hadoop	 GraphLab	 TensorFlow	

ApplicaCon	 ApplicaCon	 ApplicaCon	



Overlays	Facilitate	Virtualiza-on	
•  FPGA	virtualizaCon	only	now	being	explored	

–  Requires	specialized	hardware	
–  A	very	large	“state”	

•  Overlays	naturally	have	a	much	smaller	state,	facilitaCng	
snapshots	and	context	switching	

–  We	would	like	to	explore	this	support	in	our	mesh-of-FUs	overlay	

	

16-07-11	 26	



Challenges	to	Overlays	
	

•  Resource	overhead	
–  That	is,	the	FPGA	resources	used	by	the	overlay	compared	to	a	

dedicated	circuit	(HDL)	that	implements	the	same	applicaCon	
–  ~4X	for	our	FP	overlay	and	can	be	higher	
–  Difficult	to	quanCfy	design	effort	

–  FPGAs	are	are		increasing	in	size		
–  Hard	floaCng	point	units	
–  Hardening	the	overlay	once	design	is	over?	

16-07-11	 27	



Challenges	to	Overlays	–	Cont’d	
•  Overlay	architectures	need	more	exploraCon:	which	

architecture	for	a	given	applicaCon	domain	
–  How	to	ensure	scalability?	
–  Taking	into	account	the	underlying	FPGA	device	constraints		
–  How	to	implement	well	(e.g.,	data-driven	execuCon,	FIFOs,	etc.)?		
–  Fixed	funcCon	vs.	mulC-funcCon	FUs?	
–  How	to	reducing	resource	overhead?	
–  Time	mulCplexed?	
–  MulCple	devices?	

	

16-07-11	 28	



Challenges	to	Overlays	–	Cont’d	
•  Evolving	the	FPGA	design	tools	

–  Modular	architectures	do	not	lead	to	modular	circuits	
•  The	tools	do	not	understand	the	modularity	
•  At	present	we	must	“fight	with	them”	[FPL	2014]	

–  The	tools	must	evolve	to	allow	developers	to	express	and	to	recognize	
the	modularity	of	the	architecture	
•  Scalable	circuits	from	scalable	architectures	

16-07-11	 29	



Concluding	Remarks	
•  A	case	for	overlays	

–  Performance,		soOware-friendliness,	customizability	and	system	
integraCon	

•  They	can	serve	as	“middle	ground”	between	hardware	design	
and	soOware	programming	
–  Either	for	producCon	or	for	debugging	and	prototyping	

•  Challenges	to	architecture,	programming	models,	
implementaCon	and	resource	overhead	

16-07-11	 30	



Ques-ons?	

16-07-11	 31	


