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Power and energy savings at run-time 

Power = α.C.V2.f+g1.V3   

Energy  = Power * T

1. DVFS  (Dynamic Voltage 

and Frequency Scaling)  : 

open-loop

• e.g. AMD cool&quiet, 

Intel SpeedStep

2. AVS  (Adaptive Voltage 

Scaling)  closed-loop 

• e.g ARM Razor  

3. AVLS (Adaptive Voltage 

and Logic Scaling) in 

reconfigurable chips : 

FPGAs ?

Power/ Voltage and Frequency relations : Source Intel



Adaptive Voltage Scaling tool flow 

• Tool flow and IP blocks 

control the frequency and 

voltage of the device and 

detect optimal operational 

points at run-time using in-

situ detectors.

• The proposed approach 

works in a variation-aware 

closed-loop configuration so 

it is sensitive to temperature 

and process variations.

• The flow has been ported to 

Vivado and it is based on 

three phases. Phase 3 is 

done with incremental P&R.

Elongate implementation flow
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Timing detectors for logic
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• Soft-macro Detectors 

guarantee that the path 

of the slow flip-flop (SFF) 

slightly longer than main 

flip-flop (MFF).  

• Discrepancies between 

MFF and SFF are 

detector in XOR and 

communicated to DFS 

(Dynamic Frequency 

Scaling) unit. 

• MFF replicates the 

functionality of the 

original flip-flop in the 

critical path. 

Logic timing detector



System architecture

ARM CPU control the Elongate IP
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Case study: Video Fusion

Fig. 1 Fusion with wavelets

Fig. 2 Prototype System

• Video fusion of visible 

and thermal imagery 

provides a method to 

combine 

complementary 

information for better 

data analysis.  

• The prototype system 

uses two cameras 

interfaced to a Zynq-

based board that 

combines an dual-core 

ARM processor and a 

FPGA fabric in the 

same chip. 



Fusion algorithm with DT-CWT
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ARM profiling

• DT-CWT algorithm 

developed in the group as  

offering good quality of 

results in presence of noisy 

input.  

• The forward and reversed 

DT-CWT represent around 

70% of total complexity and 

are selected as candidates 

for acceleration.

• System operates three times 

faster (amdahl law) but 

hardware is too fast and 

needs to wait for data to be 

prepared by the processor

Fig. 4 Profiling results

Fig. 3 Fusion with DT-CWT



Hardware and Linux driver development 
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Accelerator is too fast !!

Heterogeneous hardware overview

• Hardware accelerator for 

wavelets developed using 

high-level synthesis (e.g. 

Vivado HLS).

• Processor needs to 

reserved memory area in 

kernel space and move 

pixel data so that it is 

accessible to the 

accelerator .

• Double buffering so that 

data preparation by 

processor and data 

processing by accelerator 

overlap. 



Power and performance analysis

• Valid voltages range 

from 1 volt to 0.72 

volt and frequencies 

range from 170 

MHz to 68 Mhz.

• Most energy 

efficient point with 

negligible impact in 

performance occurs 

at 0.72 volts and 68  

MHz.

• Running the FPGA 

at nominal 1 v and 

68 MHz results in 

70-85% higher 

energy .



Energy analysis

Processor and FPGA fabric energy analysis FPGA fabric energy analysis



Combining voltage, frequency and logic 

scaling in AVLS.

• A configurable core can change the effective capacitance affecting both dynamic and 

static power : Power = α.C.V2.f+g1.V3

• Hardware configurations with different levels of complexity easy to obtain with high-

level synthesis.

• Possible at run-time in modern FPGAs that enable partial dynamic reconfiguration.

Configuration 1 Configuration 2 Configuration 3



Next steps

 Case study based on fusion application shows that adaptive voltage scaling 

with in-situ detectors can significantly improve performance or reduced energy 

by computing to the limit of correctness.

 Can we go beyond this limit and how fast can we find these points ?

 AVLS extends AVS by adjusting the logic (i.e. capacitance) of the design at 

run-time: big/slow cores or small/fast cores ?  Application dependent. 

 The AVLS concept could be controllable in a energy-aware run-time system  

under an OpenCL framework.

 The in-situ detector idea could be extended (by the manufacturer) to the 

hardened processor and memory subsystem.


