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Summary

* HLS tools map code to hardware
but require manual source code (heap-directed pointers

refactoring... dynamic memory allocation)

Original source code

— ... to map pointer-manipulating l
programs efficiently into HW

e A static program analysis

— to analyse pointer-based memory Our tool
accesses and heap layout
— to identify disjoint, independent l
regions in heap memory Modified source code
* Source-to-source transformations l
— to partition heap across on-chip
memory banks Standard HLS tool

— To perform automatic loop
parallelization
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e State-of-the-art HLS tools don’t support full
featured C/C++ code

A major restriction: Heap directed pointers
and dynamic memory allocation not
supported

 Worth considering at all?
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Case study:

 Compare computational properties of two
algorithms for K-means clustering

* SW (C++) / RTL (VHDL) / HLS (C++)
implementations

* Code available on GitHub (Vivado-KMeans)
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Brute-force algorithm Tree-based algorithm
 Computationally expensive  Data-dependent control flow
* Simple control flow * Pointer-based tree traversal
 Embarrassingly parallel * Dynamic memory allocation
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Implementation

Software
C++, GCC-03
Intel i7, 3.4GHz

Hand-crafted RTL
Virtex7 FPGA

C++-based HLS
Virtex7 FPGA
(Vivado HLS)

The battlefield

i brute-
- force
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Tree-based force i
e ommmm code refactoring
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Tree-based algorithm:
7.2x improvement
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Identical area constraint for FPGA
implementations: 6500 slices
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12



Imperial College
London

Distributed
Block RAM

HLS

SW memory model

0x18
Ox14
0x10
0x0C
0x08
0x04
0x00

high address

low address

int main() {
x = Ali];
P = hew int;
*p=3;
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Our goal

e Partition heap-allocated data
structures (‘heaplets’)

* Synthesize a parallel
implementation

h;p&] —> heaia[N/Z] heaib[N/Z]

SW memory model

0x18
Ox14
0x10
0x0C
0x08
0x04
0x00

* Ensure that heap partitions are ‘private’

high address

%

low address
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s.pPe&Hbledgc)essing root node)
while s!'=0 do
whileROR(Rdo s);

... bbpamoelth{agcess left sub-tree)
enid whileft!= 0) && (u->right!=0) then
\4 s = PUSH(u->right, s);

***  °°° | | while s PtBHOU->left, s);

enddfp body (access right sub-tree)
endiebdtdes;
end while

* Partition linked list and tree

* Will the red loop ever access data in the green partition? No!
* Parallelization is legal (does not violate data dependencies)
* Why is it hard for a tool to figure this out?
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Heap accessed in
some iteration in
the future

Heap accessed
in the next
iteration

Do these iterations access the same me

heagiéealss].u]
k —> = ? <

* Need to reason about structure, heap layout and disjointness
 None of this is explicit in the above representation ”
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Describe heap |-
layout with
formulae n|u
Conjunction
n | u . .. /A does not

rule out

Q ...... 500 a|iasing!

5 = [u' Uq,N: S| @S{ [u: usy, n: s5] @é% [u: uz,n: 0]
%‘ﬁts {& uﬁéCOF&lN@IlékjS L e @1'2 > [Lue, 7 u7)
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Describe heap Formula
layout with below can
formulae n|u also mean this
/ Conjunction
n | u ‘A" does not
rule out
. aliasing!

s = [uzug,n:sy| A s;— [uzus,nisy] A sy— [u:ug, n: 0]
A up— [Lug, riuc] A us - [Liug riug] A up; = [Lug, 7:us]

AN
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Describe heap L11-
layout with / * Tractable heap
formulae nju analysis
/ \ e Task: Split the
heap formula
into red and

.

green partition

s - [uruy,n:s;| % s;— [uruy,nisy] * s;— [u:ug, n:0]

% Uy~ [Liug, miuc] % us = [Liug, r:iug| % up; = [Lug, r:us]
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* Symbolically execute the program using
(a modified version of) coreStar

{x=y;} x:=E  {x=Ely;/x]}

{EP [f: 1]}[E]f= { E [£:F]]
{x=y]ANE-[f:z]]} x:=[E]l.f {x=2 /\E[yl/x] [£:2z]]}
{emp |} new(x)  {x> z] ]

{ E—> vy’ } delete(E) {emp }
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Automated source-to-source compiler
LLNL ROSE Compiler Infrastructure

, Parse Substitute Heap Unparse
iInto AST . : e AST
_ Analysis dynamic splitting /
interface memory Loop
allocation splitting
A
C/C++ C/C++
code code
Heap
analysis / l
Theorem Vivado HLS
proving l
RTL impl.

Automated proof engine
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Tree-based K-means clustering

x 10°
Latency | | | | |
[clock cycles] o no parallelization,
10 only ensuring synthesizability
8
6 o parallelization p=2
4 ©
5 parallelization p=4
o

0 2000 4000 6000 8000 10000
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P Slices Clock Cycles

1§ Merger (linked lists)

Baseline (no par.) 574 9.0ns 21167k %
Autom. Parallelization 965 8.7 ns 5483k

2
Baseline (no par.) 1521 5.2 ns 901k > X2
Autom. Parallelization 2 4069 6.0ns 487k

€] K-means (tree, linked list, single heap records)
Baseline (no par.) 1 2694 6.1ns 1120k > X2

Autom. Parallelization 2 5618 7.0 ns 606k P
X3.6
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Conclusions

* Exciting issues in HLS

— Memory
* Heap, Arrays

— Real arithmetic (come to another talk!)

* Lots still to do
— Unified theoretical basis for memory optimisation
— Scope for SVM support and fancy memory models
— Incorporation of non-traditional error sources
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Thank you for listening.



