Imperial College
London

New Vistas in High-Level Synthesis:
Working with the Heap

George A. Constantinides
(joint work with Winterstein)
August 2016

Imperial College HLS for the Heap

Summary

* HLS tools map code to hardware
but require manual source code (heap-directed pointers

refactoring... dynamic memory allocation)

Original source code

— ... to map pointer-manipulating l
programs efficiently into HW

e A static program analysis

— to analyse pointer-based memory Our tool
accesses and heap layout
— to identify disjoint, independent l
regions in heap memory Modified source code
* Source-to-source transformations l
— to partition heap across on-chip
memory banks Standard HLS tool

— To perform automatic loop
parallelization

Imperial College

e State-of-the-art HLS tools don’t support full
featured C/C++ code

A major restriction: Heap directed pointers
and dynamic memory allocation not
supported

 Worth considering at all?

Imperial College

Case study:

 Compare computational properties of two
algorithms for K-means clustering

* SW (C++) / RTL (VHDL) / HLS (C++)
implementations

* Code available on GitHub (Vivado-KMeans)

Imperial College

600 600 -

400 400

2001 o 200} .

of . ol e

200+ ¢ 200 *

400 - -400 - \

600 600 e

-800 + -800 ’

-1000 | . . 1000 F

120850 0 200 200 500 800 1000 '120_30'0. ° 6. . ;0; ° :00. : 500 500 1000
Brute-force algorithm Tree-based algorithm
 Computationally expensive Data-dependent control flow
* Simple control flow * Pointer-based tree traversal
 Embarrassingly parallel * Dynamic memory allocation

11

Imperial College

Implementation

Software
C++, GCC-03
Intel i7, 3.4GHz

Hand-crafted RTL
Virtex7 FPGA

C++-based HLS
Virtex7 FPGA
(Vivado HLS)

The battlefield

i brute-
- force

1
/a3 Brute-

Tree-based force i
e ommmm code refactoring

N ;1:;/6 3
Tree-based algorithm:
7.2x improvement
after extensive source

7_@

Y72

107"

Identical area constraint for FPGA
implementations: 6500 slices

10 10’ 10
Time per clustering iteration [ms]

12

Imperial College
London

Distributed
Block RAM

HLS

SW memory model

0x18
Ox14
0x10
0x0C
0x08
0x04
0x00

high address

low address

int main() {
x = Ali];
P = hew int;
*p=3;

16

Imperial College

Our goal

e Partition heap-allocated data
structures (‘heaplets’)

* Synthesize a parallel
implementation

h;p&] —> heaia[N/Z] heaib[N/Z]

SW memory model

0x18
Ox14
0x10
0x0C
0x08
0x04
0x00

* Ensure that heap partitions are ‘private’

high address

%

low address

18

Imperial College

s.pPe&Hbledgc)essing root node)
while s!'=0 do
whileROR(Rdo s);

... bbpamoelth{agcess left sub-tree)
enid whileft!= 0) && (u->right!=0) then
\4 s = PUSH(u->right, s);

*** °°° | | while s PtBHOU->left, s);

enddfp body (access right sub-tree)
endiebdtdes;
end while

* Partition linked list and tree

* Will the red loop ever access data in the green partition? No!
* Parallelization is legal (does not violate data dependencies)
* Why is it hard for a tool to figure this out?

21

Imperial College
London

Heap accessed in
some iteration in
the future

Heap accessed
in the next
iteration

Do these iterations access the same me

heagiéealss].u]
k —> = ? <

* Need to reason about structure, heap layout and disjointness
 None of this is explicit in the above representation ”

Imperial College

Describe heap |-
layout with
formulae n|u
Conjunction
n | u . .. /A does not

rule out

Q 500 a|iasing!

5 = [u' Uq,N: S| @S{ [u: usy, n: s5] @é% [u: uz,n: 0]
%‘ﬁts {& uﬁéCOF&lN@IlékjS L e @1'2 > [Lue, 7 u7)

24

Imperial College

Describe heap Formula
layout with below can
formulae n|u also mean this
/ Conjunction
n | u ‘A" does not
rule out
. aliasing!

s = [uzug,n:sy| A s;— [uzus,nisy] A sy— [u:ug, n: 0]
A up— [Lug, riuc] A us - [Liug riug] A up; = [Lug, 7:us]

AN

25

Imperial College

Describe heap L11-
layout with / * Tractable heap
formulae nju analysis
/ \ e Task: Split the
heap formula
into red and

.

green partition

s - [uruy,n:s;| % s;— [uruy,nisy] * s;— [u:ug, n:0]

% Uy~ [Liug, miuc] % us = [Liug, r:iug| % up; = [Lug, r:us]

27

Imperial College

* Symbolically execute the program using
(a modified version of) coreStar

{x=y;} x:=E {x=Ely;/x]}

{EP [f: 1]}[E]f= { E [£:F]]
{x=y]ANE-[f:z]]} x:=[E]l.f {x=2 /\E[yl/x] [£:2z]]}
{emp |} new(x) {x> z]]

{ E—> vy’ } delete(E) {emp }

14

Imperial College

Automated source-to-source compiler
LLNL ROSE Compiler Infrastructure

, Parse Substitute Heap Unparse
iInto AST . : e AST
_ Analysis dynamic splitting /
interface memory Loop
allocation splitting
A
C/C++ C/C++
code code
Heap
analysis / l
Theorem Vivado HLS
proving l
RTL impl.

Automated proof engine

33

Imperial College

Tree-based K-means clustering

x 10°
Latency | | | | |
[clock cycles] o no parallelization,
10 only ensuring synthesizability
8
6 o parallelization p=2
4 ©
5 parallelization p=4
o

0 2000 4000 6000 8000 10000
Slices 34

Imperial College
London

P Slices Clock Cycles

1§ Merger (linked lists)

Baseline (no par.) 574 9.0ns 21167k %
Autom. Parallelization 965 8.7 ns 5483k

2
Baseline (no par.) 1521 5.2 ns 901k > X2
Autom. Parallelization 2 4069 6.0ns 487k

€] K-means (tree, linked list, single heap records)
Baseline (no par.) 1 2694 6.1ns 1120k > X2

Autom. Parallelization 2 5618 7.0 ns 606k P
X3.6

35

Imperial College

Conclusions

* Exciting issues in HLS

— Memory
* Heap, Arrays

— Real arithmetic (come to another talk!)

* Lots still to do
— Unified theoretical basis for memory optimisation
— Scope for SVM support and fancy memory models
— Incorporation of non-traditional error sources

Imperial College

Thank you for listening.

